Advertisement

Journal of Materials Science

, Volume 43, Issue 15, pp 5206–5210 | Cite as

Initial nucleation kinetics of martensite transformation

  • J. R. C. Guimarães
  • P. R. Rios
Article

Abstract

The initial rate of martensite transformation in Fe–Ni and Fe–Ni–Mn is described by the product of the probability of a nucleation site existing in an austenite grain times the probability of its propagation. The former depends on driving force, the latter on defect mobility. The onset of both athermal and isothermal martensite could be modeled in a consistent way, which suggests that both modes have common fundamentals.

Keywords

Austenite Martensite Martensite Transformation Nucleation Site Initial Reaction Rate 

Notes

Acknowledgements

One of the authors (P. R. RIOS) is grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, and to Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro, FAPERJ, for financial support. Thanks are due to Chris Hoffman (RMC Inc.) for his valuable assistance with the bibliography.

References

  1. 1.
    Cohen M, Olson GB (1976) Suppl Trans JIM 17:93Google Scholar
  2. 2.
    Cech RE, Turnbull D (1956) Trans AIME 206:124Google Scholar
  3. 3.
    Brook R, Entwisle AR (1965) J Iron Steel Inst 203:905Google Scholar
  4. 4.
    Raghavan V (1969) Acta Metall 17:1299. doi: https://doi.org/10.1016/0001-6160(69)90145-X CrossRefGoogle Scholar
  5. 5.
    Guimarães JRC, Gomes JC (1978) Acta Metall 26:1591. doi: https://doi.org/10.1016/0001-6160(78)90068-8 CrossRefGoogle Scholar
  6. 6.
    Ghosh G (1988) Mater Sci Eng A 101:213. doi: https://doi.org/10.1016/0025-5416(88)90809-9 CrossRefGoogle Scholar
  7. 7.
    Rios PR, Guimarães JRC (2007) Scr Mater 57:1105. doi: https://doi.org/10.1016/j.scriptamat.2007.08.019 CrossRefGoogle Scholar
  8. 8.
    Shih CH, Averbach BL, Cohen M (1955) Trans AIME 203:183Google Scholar
  9. 9.
    Ghosh G, Raghavan V (1986) Mater Sci Eng A 80:65. doi: https://doi.org/10.1016/0025-5416(86)90303-4 CrossRefGoogle Scholar
  10. 10.
    Kaufman L, Cohen M (1958) Prog Met Phys 7:165. doi: https://doi.org/10.1016/0502-8205(58)90005-4 CrossRefGoogle Scholar
  11. 11.
    Entwisle AR, Feeney JA (1969) In: Nicholson RB (ed) The Mechanism of phase transformations in crystalline solids, Institute of Metals, London, pp 156–161Google Scholar
  12. 12.
    Borgenstam A, Hillert M (1997) Acta Mater 45:651. doi: https://doi.org/10.1016/S1359-6454(96)00186-3 CrossRefGoogle Scholar
  13. 13.
    Kurdjumov GV, Maximova OP (1948) Dokl Akad Nauk SSSR 61:83Google Scholar
  14. 14.
    Kurdjumov GV, Maximova OP (1950) Dokl Akad Nauk SSSR 73:95Google Scholar
  15. 15.
    Patel JR, Cohen M (1953) Acta Metall 1:531. doi: https://doi.org/10.1016/0001-6160(53)90083-2 CrossRefGoogle Scholar
  16. 16.
    Gooch TG, West DRF (1967) J Iron Steel Inst 205:555Google Scholar
  17. 17.
    Kakeshita T, Katsuyama J, Fukuda T, Saburi T (2001) Mater Sci Eng A 312:219. doi: https://doi.org/10.1016/S0921-5093(00)01878-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Universidade Federal FluminenseEscola de Engenharia Industrial Metalúrgica de Volta RedondaVolta RedondaBrazil
  2. 2.Sao PauloBrazil

Personalised recommendations