Journal of Materials Science

, Volume 43, Issue 23–24, pp 7293–7298 | Cite as

Decomposition process in a FeAuPd alloy nanostructured by severe plastic deformation

  • X. SauvageEmail author
  • A. Chbihi
  • D. Gunderov
  • E. V. Belozerov
  • A. G. Popov
Ultrafine-Grained Materials


The decomposition process mechanisms have been investigated in a Fe50Au25Pd25 (at.%) alloy processed by severe plastic deformation. Phases were characterized by X-ray diffraction (XRD) and microstructures were observed using transmission electron microscopy (TEM). In the coarse grain alloy homogenized and aged at 450 °C, the bcc α-Fe and fcc AuPd phases nucleate in the fcc supersaturated solid solution and grow by a discontinuous precipitation process resulting in a typical lamellar structure. The grain size of the homogenized FeAuPd alloy was reduced in a range of 50–100 nm by high pressure torsion (HPT). Aging at 450 °C this nanostructure leads to the decomposition of the solid solution into an equi-axed microstructure. The grain growth is very limited during aging and the grain size remains under 100 nm. The combination of two phases with different crystallographic structures (bcc α-Fe and fcc AuPd) and of the nanoscaled grain size gives rise to a significant hardening of the alloy.


Severe Plastic Deformation Equal Channel Angular Pressing High Pressure Torsion AuPd Discontinuous Precipitation 


  1. 1.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103CrossRefGoogle Scholar
  2. 2.
    Saito S, Tsuji N, Utsunomiya H, Sakai T, Hong RG (1998) Scr Mater 39:1221CrossRefGoogle Scholar
  3. 3.
    Sauvage X, Ivanisenko Y (2007) J Mater Sci 42:1615CrossRefGoogle Scholar
  4. 4.
    Korznikov AV, Dimitrov O, Korznikova GF, Dallas JP, Quivy A, Valiev RZ, Mukherjee A (1999) Nanostruct Mater 11:17CrossRefGoogle Scholar
  5. 5.
    Sauvage X, Pippan R (2005) Mater Sci Eng A 410–411:345CrossRefGoogle Scholar
  6. 6.
    Sabirov I, Pippan R (2005) Scr Mater 52:1293CrossRefGoogle Scholar
  7. 7.
    Sauvage X, Jessner P, Vurpillot F, Pippan R (2008) Scr Mater 58:1125CrossRefGoogle Scholar
  8. 8.
    Hall EO (1951) Proc Phys Soc B 64:747CrossRefGoogle Scholar
  9. 9.
    Petch NJ (1953) J Iron Steel Inst 173:25Google Scholar
  10. 10.
    Valiev R (2004) Nat Mater 3:511CrossRefGoogle Scholar
  11. 11.
    Ma E (2003) Nat Mater 2:7CrossRefGoogle Scholar
  12. 12.
    Cheng S, Zhao YH, Zhu YT, Ma E (2007) Acta Mater 55:5822CrossRefGoogle Scholar
  13. 13.
    Ma E (2006) JOM 58(4):49CrossRefGoogle Scholar
  14. 14.
    Turnbull D (1955) Acta Metall 3:55CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • X. Sauvage
    • 1
    Email author
  • A. Chbihi
    • 1
  • D. Gunderov
    • 2
  • E. V. Belozerov
    • 3
  • A. G. Popov
    • 3
  1. 1.CNRS UMR 6634, Groupe de Physique des Matériaux, Faculté des SciencesUniversity of RouenRouenFrance
  2. 2.Institute for Physics of Advanced MaterialsUfa State Aviation Technical UniversityUfaRussia
  3. 3.Institute of Metal PhysicsEkaterinburgRussia

Personalised recommendations