Journal of Materials Science

, Volume 43, Issue 15, pp 5199–5205 | Cite as

Light absorption efficiencies of gold nanoellipsoid at different resonance frequency

  • Jian ZhuEmail author
  • Jian-Jun Li
  • Jun-Wu Zhao
  • Shen-Wei Bai


Light absorption efficiencies (defined as the ratio of the absorption cross section to the total extinction cross section at each resonance wavelength) of gold nanodisk and nanorod were calculated based on quasi-static approximation. The absorption efficiency solely depends on the frequency of surface plasmon resonance. With increasing resonance wavelength, the absorption efficiencies change in the same fashion for both nanodisk and nanorod. However, the resonance absorption at short wavelength is easy to be obtained by gold nanodisk, whereas the resonance absorption at longer wavelength is easy to be obtained by gold nanorod. High absorption efficiency (>98%) can be obtained in the visible region by increasing the aspect ratio of gold nanodisk. Although the longitudinal absorption efficiency of gold nanorod is relative lower by increasing the aspect ratio, the absorption efficiency is also tunable in the near infrared region, which makes it potentially useful in silicon solar cells and vivo applications.


Surface Plasmon Resonance Absorption Efficiency Resonance Wavelength Silicon Solar Cell Oblate Spheroid 


  1. 1.
    Bouhelier A, Bachelot R, Lerondel G, Kostcheev S, Royer P, Wiederrecht GP (2005) Phys Rev Lett 95:267405. doi: CrossRefGoogle Scholar
  2. 2.
    Atkinson R, Hendren WR, Wurtz GA, Dickson W, Zayats AV, Evans P et al (2006) Phys Rev B 73:235402. doi: CrossRefGoogle Scholar
  3. 3.
    Jiang XC, Brioude A, Pileni MP (2006) Colloid Surf A 277:201. doi: CrossRefGoogle Scholar
  4. 4.
    Eremina E, Eremin Y, Wriedt T (2007) Opt Commun 273:278. doi: CrossRefGoogle Scholar
  5. 5.
    Huang CJ, Chiu PH, Wang YH, Meen TH, Yang CF (2007) Nanotechnology 18:395603. doi: CrossRefGoogle Scholar
  6. 6.
    Stoleru VG, Towe E (2005) Microelectron Eng 8:358. doi: CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) J Phys Chem B 110:7238. doi: CrossRefGoogle Scholar
  9. 9.
    Lee KS, El-Sayed MA (2005) J Phys Chem B 109:20331. doi: CrossRefGoogle Scholar
  10. 10.
    Langhammer C, Kasemo B, Zoric I (2007) J Chem Phys 126:194702. doi: CrossRefGoogle Scholar
  11. 11.
    El-Sayed IH, Huang X, El-Sayed MA (2005) Nano Lett 5:829. doi: CrossRefGoogle Scholar
  12. 12.
    Qu SL, Gao YC, Jiang XW, Zeng HD, Song YL, Qiu JR et al (2003) Opt Commun 224:321. doi: CrossRefGoogle Scholar
  13. 13.
    Pillai S, Catchpole KR, Trupke T, Green MA (2007) J Appl Phys 101:093105. doi: CrossRefGoogle Scholar
  14. 14.
    Nishioka K, Horita S, Ohdaira K, Matsumura H (2008) Sol Energy Mater Sol C 92(8):919. doi: CrossRefGoogle Scholar
  15. 15.
    Wen C, Ishikawa K, Kishima M, Yamada K (2000) Sol Energy Mater Sol C 61:339. doi: CrossRefGoogle Scholar
  16. 16.
    Naidu BVK, Park JS, Kim SC, Park SM, Lee EJ (2008) Sol Energy Mater Sol C 92:397. doi: CrossRefGoogle Scholar
  17. 17.
    Perenboom JAAJ, Wyder P, Meier F (1981) Phys Rep 78:173. doi: CrossRefGoogle Scholar
  18. 18.
    Bohren CF (1983) Absorption and scattering of light by small particles. A Wiley Interscience Publication, New YorkGoogle Scholar
  19. 19.
    Viseu TMR, Ferreira MIC (2005) Sol Energy Mater Sol C 88:301. doi: CrossRefGoogle Scholar
  20. 20.
    Negny S, Meyer M, Prevost M (2001) Chem Eng J 83:7. doi: CrossRefGoogle Scholar
  21. 21.
    Wang Y, Kan H (2003) Opt Commun 226:303. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jian Zhu
    • 1
    Email author
  • Jian-Jun Li
    • 2
  • Jun-Wu Zhao
    • 2
  • Shen-Wei Bai
    • 1
  1. 1.School of ScienceXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  2. 2.School of Life Science and TechnologyXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations