Journal of Materials Science

, Volume 43, Issue 15, pp 5102–5108 | Cite as

Synthesis and optical properties of CeO2 nanocrystalline films grown by pulsed electron beam deposition

  • B. TatarEmail author
  • E. D. Sam
  • K. Kutlu
  • M. Ürgen


The nanocrystalline cerium dioxide (CeO2) thin films were deposited on soda lime (SLG) and Corning glass by pulsed e-beam deposition (PED) method at room temperature. The structure of the produced CeO2 thin films was investigated by X-ray diffraction (XRD) analysis, X-ray photoelectron spectroscopy (XPS), and micro Raman spectroscopy. The surface topography of the films was examined by atomic force microscopy (AFM). Film thickness and growth morphologies were determined with FEG-SEM from the fracture cross sections. XPS studies gave a film composition composed of +4 and +3 valent cerium typical to nanocrystalline ceria structures deficient in oxygen. The ceria films were polycrystalline in nature with a lattice parameter (a) of 0.542 nm. The Raman characteristics of the source material and the films deposited were very similar in character. Raman lines for thin film and bulk CeO2 was observed at 465 cm−1. The optical properties of the CeO2 films were deduced from reflectance and transmittance measurements at room temperature. From the optical model, the refractive index was determined as 1.8–2.7 in the photon energy interval from 3.5 to 1.25 eV. The optical indirect band gap (Eg) of CeO2 nanocrystalline films was calculated as 2.58 eV.


Ceria CeO2 Small Crystallite Size Pulse Electron Beam Cerium Dioxide 



The authors gratefully acknowledge JEOL-Japan for the valuable support they have given in XPS measurements and Dr. Gültekin Göller and H. Sezer for the FEG-SEM investigations. This study is partially supported through the “Advances Technologies in Engineering” project financed by State Planning Organization of Turkey.


  1. 1.
    Becht M, Morishita T (1996) Chem Vap Deposition 2:191. doi: CrossRefGoogle Scholar
  2. 2.
    Al-Robaee MS, Krishna MG, Rao KN, Mohan S (1991) J Vac Sci Technol A 9:6. doi: CrossRefGoogle Scholar
  3. 3.
    Schwab RG, Steiner RA, Mages G, Beie HJ (1992) Thin Solid Films 207:283. doi: CrossRefGoogle Scholar
  4. 4.
    Chen MY, Zu XT, Xiang X, Zhang HL (2007) Physica B (Amsterdam) 389:263. doi: CrossRefGoogle Scholar
  5. 5.
    Zhang DE, Ni XM, Zheng HG, Zhang XJ, Song JM (2006) Solid State Sci 8:1290. doi: CrossRefGoogle Scholar
  6. 6.
    Kanakaraju S, Mohan S, Sood AK (1997) Thin Solid Films 305:191. doi: CrossRefGoogle Scholar
  7. 7.
    Yamshita M, Kameyama K, Yabe S, Yoshida S, Fujishiro Y, Kawai T et al (2002) J Mater Sci Lett 37:683CrossRefGoogle Scholar
  8. 8.
    Özer N (2001) Sol Energy Mater Sol Cells 68:391. doi: CrossRefGoogle Scholar
  9. 9.
    Porqueras I, Person C, Corbella C, Vives M, Pinyol A, Bertran E (2003) Solid State Ionics 165:131. doi: CrossRefGoogle Scholar
  10. 10.
    Malandrino G, Lo Nigro R, Benelli C, Castelli F, Fragala IL (2000) Chem Vap Deposition 6:233. doi:10.1002/1521-3862(200010)6:5<233::AID-CVDE233>3.0.CO;2-DCrossRefGoogle Scholar
  11. 11.
    Kim L, Kim J, Lee H, Jung D, Roh Y (2001) Jpn J Appl Phys 2(40):L564CrossRefGoogle Scholar
  12. 12.
    Hass G, Ramsay JB, Thun R (1958) J Opt Soc Am 48:324CrossRefGoogle Scholar
  13. 13.
    Baudry P, Rodrigues ACM, Aegerter M, Bulhoes LO (1990) Mater J Non-Cryst Solids 121:319. doi: CrossRefGoogle Scholar
  14. 14.
    Chin CC, Lin RJ, Yu YC, Wang CW, Lin EK, Tsai WC et al (1997). IEEE Trans Appl Superconduct 2:7Google Scholar
  15. 15.
    Patel M, Kim K, Ivill M, Budai JD, Norton DP (2004) Thin Solid Films 468:1. doi: CrossRefGoogle Scholar
  16. 16.
    Masetti E, Varsano F, Decker F, Krasilnikova A (2001) Electrochim Acta 46:2085. doi: CrossRefGoogle Scholar
  17. 17.
    Hirschauer B, Chiaia G, Gothelid M, Karlsson UO (1999) Thin Solid Films 348:3. doi: CrossRefGoogle Scholar
  18. 18.
    Karakaya K, Barcones B, Rittersma ZM, Van Berkum JGM, Verheijen MA, Rijinders G et al (2006) Mater Sci Semiconductor Process 9:1061CrossRefGoogle Scholar
  19. 19.
    Koo WH, Jeoung SM, Choi SH, Jo SJ, Baik HK, Lee SJ et al (2004) Thin Solid Films 468:28. doi: CrossRefGoogle Scholar
  20. 20.
    Elidrissi B, Addou M, Regragui M, Monty C, Bougrine A, Kachouane A (2000) Thin Solid Films 379:23. doi: CrossRefGoogle Scholar
  21. 21.
    Ghodsi FE, Tepehan FZ (2006) Phys Status Solidi A 203:526. doi: CrossRefGoogle Scholar
  22. 22.
    Reisfeld R, Zayat M, Minti H, Zastrow A (1998) Sol Energy Mater Sol Cells 54:109. doi: CrossRefGoogle Scholar
  23. 23.
    Keomany D, Pettit JP, Deroo D (1995) SPIE Proc 2255:513Google Scholar
  24. 24.
    Pollard KD, Jenkins HA, Puddephatt RJ (2000) Chem Mater 12:701. doi: CrossRefGoogle Scholar
  25. 25.
    Barreca D, Gasparotto A, Tondello E, Sada C, Polizzi S, Benedetti A (2003) Chem Vap Deposition 4:9Google Scholar
  26. 26.
    Barreca D, Bruno G, Gasparotto A, Losurdo M, Tondello E (2003) Mater Sci Eng C 23:1013. doi: CrossRefGoogle Scholar
  27. 27.
    Lee DF, Christen HM, List FA, Heatherly L, Leonard KJ, Rouleau CM, Cook SW, Martin PM, Paranthaman M, Goyal A (2005) Physica C 426–431:878CrossRefGoogle Scholar
  28. 28.
    Guo YF, Chen LM, Lei M, Guo X, Li PG, Tang WH (2006) Physica C 450:96. doi: CrossRefGoogle Scholar
  29. 29.
    Choudhary RJ, Ogale SB, Shinde SR, Kulkarni VN, Venkatesan T, Harshavardhan KS et al (2004) Appl Phys Lett 84:1483. doi: CrossRefGoogle Scholar
  30. 30.
    Klug HP, Alexander LE (1974) X-ray diffraction procedures, 2nd edn. Wiley, New YorkGoogle Scholar
  31. 31.
    Qiu L, Liu F, Zhao L, Ma Y, Yao J (2006) Appl Surf Sci 252:4931. doi: CrossRefGoogle Scholar
  32. 32.
    Zhang F, Wang P, Koberstein J, Khalid S, Chan SW (2004) Surf Sci 563:74. doi: CrossRefGoogle Scholar
  33. 33.
    Chuang FY, Yang SM (2008) J Colloid Interface Sci 320:194. doi: CrossRefGoogle Scholar
  34. 34.
    Deshpande S, Patil S, Kuchibhatla S (2005) Appl Phys Lett 87:133113. doi: CrossRefGoogle Scholar
  35. 35.
    Patsalas P, Logothetidis S, Metaxa C (2002) Appl Phys Lett 81:466. doi: CrossRefGoogle Scholar
  36. 36.
    Weber WH, Hass KC, McBride JR (1993) Phys Rev B 48:178. doi: CrossRefGoogle Scholar
  37. 37.
    Spanier JE, Robinson RD, Zhang F, Chan SW, Herman IP (2001) Phys Rev B 64:245407. doi: CrossRefGoogle Scholar
  38. 38.
    Siokou A, Ntais S, Dracopoulos V, Papaefthimiou S, Leftheriotis G, Yianoulis P (2006) Thin Solid Films 514:87. doi: CrossRefGoogle Scholar
  39. 39.
    Odo GY, Nogueira LN, Lepienski CM (1999) J Non-Cryst Solids 247:232. doi: CrossRefGoogle Scholar
  40. 40.
    Ollier N, Boizot B, Reynard B, Ghaleb D, Petite G (2004) Nucl Instrum Meth Phys Res B 218:176CrossRefGoogle Scholar
  41. 41.
    Heavens OS (1991) Optical properties of thin solid films. Dover, New YorkGoogle Scholar
  42. 42.
    Pankove JI (1971) Optical process in semiconductors. Prentice-HallGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Faculty of Arts and Sciences, Department of PhysicsYıldız Technical University, DavutpaşaIstanbulTurkey
  2. 2.Department of Metallurgical and Materials EngineeringIstanbul Technical University, MaslakIstanbulTurkey

Personalised recommendations