Journal of Materials Science

, Volume 43, Issue 15, pp 5109–5114 | Cite as

Preparation, proton conduction, and application in ammonia synthesis at atmospheric pressure of La0.9Ba0.1Ga1–xMgxO3–α

  • Cheng Chen
  • Guilin MaEmail author


La0.9Ba0.1Ga1–xMgxO3–α (0 ≤ x ≤ 0.25) was prepared by the microemulsion method. A single phase of LaGaO3 perovskite structure was formed when x was ≥0.15. Electrochemical hydrogen permeation (hydrogen pumping) proved that La0.9Ba0.1Ga1–xMgxO3–α had proton conduction, and the proton conduction was measured by AC impedance spectroscopy method from 400 to 800 °C in hydrogen atmospheres. Among these samples, La0.9Ba0.1Ga0.8Mg0.2O3–α has the highest proton conductivity with the values of 9.51 × 10−4 to 4.68 × 10−2 S cm−1 at 400–800 °C. Ammonia was synthesized from nitrogen and hydrogen at atmospheric pressure in an electrolytic cell using La0.9Ba0.1Ga0.8Mg0.2O3–α as electrolyte. The rate of NH3 formation was 1.89 × 10−9 mol s−1 cm−2 at 520 °C upon imposing a current of 1 mA through the cell.


Proton Conduction Electrolytic Cell Hydrogen Atmosphere Ammonia Synthesis Ammonia Formation 



This work was supported by the National Natural Science Foundation of China (No. 20771079).


  1. 1.
    Ishihara T, Matsuda H, Takita Y (1994) J Am Chem Soc 116:3801. doi: CrossRefGoogle Scholar
  2. 2.
    Feng M, Goodenough JB (1994) Eur J Solid State Inorg Chem 31:663Google Scholar
  3. 3.
    Ma G, Zhang F, Zhu J, Meng G (2006) Chem Mater 18:6006. doi: CrossRefGoogle Scholar
  4. 4.
    Zhang F, Sun L, Zhu J et al (2008) J Mater Sci 43:1587. doi: CrossRefGoogle Scholar
  5. 5.
    Zhu JL, Zhang F, Chen C et al (2007) Chin J Inorg Chem 23:1621Google Scholar
  6. 6.
    Zhang F, Yang Q, Pan B et al (2007) Mater Lett 61:4144. doi: CrossRefGoogle Scholar
  7. 7.
    Marnellos E, Labeau M (1998) J Eur Ceram Soc 18:1397. doi: CrossRefGoogle Scholar
  8. 8.
    Zhang J, Wen Z, Han J et al (2007) J Alloys Compd 440:270. doi: CrossRefGoogle Scholar
  9. 9.
    Brunckova H, Medvecky L, Mihalik J (2008) J Eur Ceram Soc 28:123. doi: CrossRefGoogle Scholar
  10. 10.
    Navale SC, Samuel V, Gaikwad AB et al (2007) Ceram Int 33:297. doi: CrossRefGoogle Scholar
  11. 11.
    Lemos FCD, Melo DMA, Silva da JEC (2005) Mater Res Bull 40:187. doi: CrossRefGoogle Scholar
  12. 12.
    Athawale AA, Chandwadkar A, Karandikar P et al (2005) Mater Sci Eng B 119:87. doi: CrossRefGoogle Scholar
  13. 13.
    Marnellos G, Stoukides M (1998) Science 282:98. doi: CrossRefGoogle Scholar
  14. 14.
    Choi SM, Lee KT, Lee HL et al (2000) Solid State Ionics 131:221. doi: CrossRefGoogle Scholar
  15. 15.
    Kim S, Chun MC, Lee KT et al (2001) J Power Sources 93:279. doi: CrossRefGoogle Scholar
  16. 16.
    Mather GC, Islam MS (2005) Chem Mater 17:1736. doi: CrossRefGoogle Scholar
  17. 17.
    Sata N, Hiramoto K, Ishigame M et al (1996) Phys Rev B 54:15795. doi: CrossRefGoogle Scholar
  18. 18.
    Li ZJ, Liu RQ, Xie YH et al (2005) Solid State Ionics 176:1063. doi: CrossRefGoogle Scholar
  19. 19.
    Wang JD, Xie YH, Li RQ et al (2005) Mater Res Bull 40:1294. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Key Laboratory of Organic Synthesis of Jiangsu Province, School of Chemistry and Chemical EngineeringSuzhou UniversitySuzhouChina

Personalised recommendations