Journal of Materials Science

, Volume 43, Issue 23–24, pp 7418–7425 | Cite as

Precipitation hardening and grain refinement in an Al–4.2wt%Mg–1.2wt%Cu processed by ECAP

  • V. VidalEmail author
  • Z. R. Zhang
  • B. Verlinden
Ultrafine-Grained Materials


The precipitation and the strength evolution during equal channel angular pressing performed at 180 °C in an Al–4.2wt% Mg–1.2wt%Cu alloy have been studied by room temperature compression tests and transmission electron microscopy. The age hardening behaviour of these AlMgCu alloys, in which the precipitation sequence involves the S-phase and its precursors, was investigated and revealed a yield strength peak after 8 days at 180 °C. The influence of the Severe Plastic Deformation on the microstructure and mechanical properties of under-aged and peak-aged samples are presented. Notably, in the under-aged sample, a gradual increase of the strength after each ECAP pass is obtained while, the peak-aged samples loose much of their strength during the first ECAP pass. TEM characterization of the microstructure before and after ECAP is presented and linked to the evolution of the mechanical properties.


Transmission Electron Microscope Observation Equal Channel Angular Extrusion Yield Strength Increase Transmission Electron Microscope Picture ECAP Processing 


  1. 1.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103. doi: CrossRefGoogle Scholar
  2. 2.
    Valiev R (2004) Nat Mater 3:511. doi: CrossRefGoogle Scholar
  3. 3.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881. doi: CrossRefGoogle Scholar
  4. 4.
    Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Metall Mater Trans 29A:2503CrossRefGoogle Scholar
  5. 5.
    Horita Z, Fujinami T, Nemoto M, Langdon TG (2001) J Mater Process Tech 117:288. doi: CrossRefGoogle Scholar
  6. 6.
    Szczygiel P, Roven HJ, Reiso O (2005) Mater Sci Eng A 410:261. doi: CrossRefGoogle Scholar
  7. 7.
    Murayama M, Horita Z, Hono K (2001) Acta Mater 49:21. doi: CrossRefGoogle Scholar
  8. 8.
    Xu C, Furukawa M, Horita Z, Langdon TG (2003) Acta Mater 51:6139. doi: CrossRefGoogle Scholar
  9. 9.
    Ringer SP, Hono K, Sakurai T, Polmear IJ (1997) Scripta Mater 36:517. doi: CrossRefGoogle Scholar
  10. 10.
    Ratchev P, Verlinden B, De Smet P, Van Houtte P (1998) Acta Mater 46:3523. doi: CrossRefGoogle Scholar
  11. 11.
    Verlinden B, Popovic M (2006) Mater Sci Forum 503–504Google Scholar
  12. 12.
    Charai A, Walther T, Alfonso C, Zahra AM, Zahra CY (2000) Acta Mater 48:2751. doi: CrossRefGoogle Scholar
  13. 13.
    Kovarik L, Gouma PI, Kisielowski C, Court SA, Mills MJ (2004) Acta Mater 52:2509. doi: CrossRefGoogle Scholar
  14. 14.
    Ringer SP, Sakurai T, Polmear IJ (1997) Acta Mater 45:3731. doi: CrossRefGoogle Scholar
  15. 15.
    Reich L, Murayama M, Hono K (1998) Acta Mater 46:6053. doi: CrossRefGoogle Scholar
  16. 16.
    Ratchev P, Verlinden B, De Smet P, Van Houtte P (1999) Mater Trans JIM 40:34CrossRefGoogle Scholar
  17. 17.
    Kang SB, Lim CY, Kim HW, Mao J (2002) Mater Sci Forum 396:1163CrossRefGoogle Scholar
  18. 18.
    Roven HJ, Liu M, Werenskiold JC (2008) Mater Sci Eng A 483–484:54. doi: CrossRefGoogle Scholar
  19. 19.
    Zhang Z-R, Van Houtte P, Verlinden B (2008) Int J Mater Res 3:273CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Materials EngineeringKULHeverlee, LeuvenBelgium
  2. 2.Department of Mechanical Engineering and Intelligent SystemsUniversity of Electro-CommunicationChofuJapan

Personalised recommendations