Journal of Materials Science

, Volume 43, Issue 15, pp 5185–5192 | Cite as

Tungsten carbide nanopowder by plasma-assisted chemical vapor synthesis from WCl6–CH4–H2 mixtures

  • Taegong Ryu
  • H. Y. SohnEmail author
  • Kyu Sup Hwang
  • Zhigang Z. Fang


Nanosized tungsten carbide powder was prepared by a thermal plasma process using tungsten hexachloride (WCl6) as the precursor. The reduction and carburization of the vaporized precursor by methane–hydrogen mixtures produced nanosized WC1−x powder, which sometimes contained WC and/or W2C phase. The effects of the molar ratio of reactant gases, plasma torch power, the flow rate of plasma gas, and the addition of secondary plasma gas (H2) on the product composition and grain size were investigated. The tungsten carbide powder produced by the plasma process showed particle sizes less than 20 nm. The produced powder was heated in hydrogen to fully carburize the WC1−x, and W2C phases to the WC phase as well as to remove excess carbon in the product. Finally, WC powder with particle size less than 100 nm was obtained.


Plasma Torch Feed Stream Plasma Flame WCl6 Thermal Plasma Process 



This material is based upon the work supported by the US Department of Energy under Award No. DE-FC36-04GO14041 with cost sharing by Kennametal and Smith International and technical collaboration with Idaho National Laboratory. The authors wish to thank Prof. Patrick R. Taylor of Colorado School of Mines for his help with the selection, design, and initial operation of the plasma reactor system. Thanks also go to Mr. Robert W. Byrnes of the University of Utah for his competent work with the design and repair of the experimental facilities.


  1. 1.
    Upadhaya GS (2002) Cemented tungsten carbide. Noyes Publications, New YorkGoogle Scholar
  2. 2.
    Petersson A, Ågren J (2004) Acta Mater 52:1847. doi: CrossRefGoogle Scholar
  3. 3.
    Fang Z, Maheshwari P, Wang X et al (2005) Inter J Refract Metab Hard Mater 23:249. doi: CrossRefGoogle Scholar
  4. 4.
    Lee G-H, Kang S (2006) J Alloy Comp 419:281. doi: CrossRefGoogle Scholar
  5. 5.
    Wahlberg S, Grenthe I, Muhammed M (1997) Nanostruct Mater 9:105. doi: CrossRefGoogle Scholar
  6. 6.
    Zhu YT, Manthiram A (1996) Compos Part B Eng 27:407CrossRefGoogle Scholar
  7. 7.
    Fu L, Cao LH, Fan YS (2001) Scr Mater 44:1061. doi: CrossRefGoogle Scholar
  8. 8.
    Nersisyan HH, Won HI, Won CW et al (2005) Mater Chem Phys 94:153. doi: CrossRefGoogle Scholar
  9. 9.
    Wu XY, Zhang W, Wang W et al (2004) J Mater Res 19:2240. doi: CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Shi XL, Shao GQ, Duan XL et al (2006) Mater Charact 57:358. doi: CrossRefGoogle Scholar
  12. 12.
    McCandlish LE, Kear BH, Kim BK (1992) Nanostruct Mater 1:119. doi: CrossRefGoogle Scholar
  13. 13.
    Ban Z-G, Shaw LL (2002) J Mater Sci 37:3397. doi: CrossRefGoogle Scholar
  14. 14.
    Hasanpour A, Mozaffari M, Amighian J (2007) Physica B (Amsterdam) 387:298. doi: CrossRefGoogle Scholar
  15. 15.
    Liu S, Huang Z-L, Liu G et al (2006) Inter J Refract Metab Hard Mater 24:461. doi: CrossRefGoogle Scholar
  16. 16.
    Mi S, Courtney TH (1997) Scr Mater 38:171. doi: CrossRefGoogle Scholar
  17. 17.
    Chang W, Skandan G, Hahn H et al (1994) Nanostruct Mater 4:345. doi: CrossRefGoogle Scholar
  18. 18.
    Tong L, Reddy RG (2005) Scr Mater 52:1253. doi: CrossRefGoogle Scholar
  19. 19.
    Moriysohi Y, Futaki M, Komatsu S et al (1997) J Mater Sci Lett 16:347. doi: CrossRefGoogle Scholar
  20. 20.
    Fukumasa O, Fujiwara T (2003) Thin Solid Films 435:33. doi: CrossRefGoogle Scholar
  21. 21.
    Swihart MT (2003) Curr Opin Colloid In 8:127. doi: CrossRefGoogle Scholar
  22. 22.
    Gao Y, Guo X-P, Wei R (2006) Surf Coat Tech 201:2829. doi: CrossRefGoogle Scholar
  23. 23.
    Tong L, Reddy RG (2006) Mater Res Bull 41:2303. doi: CrossRefGoogle Scholar
  24. 24.
    Mohai I, Gál L, Szépvölgyi J et al (2007) J Eur Ceram Soc 27:941. doi: CrossRefGoogle Scholar
  25. 25.
    Hojo J, Oku T, Kato A (1978) J Less Common Met 59:85. doi: CrossRefGoogle Scholar
  26. 26.
    Fitzsimmons M, Sarin VK (1995) Surf Coat Tech 76:250CrossRefGoogle Scholar
  27. 27.
    Kim JC, Kim BK (2004) Scr Mater 50:969. doi: CrossRefGoogle Scholar
  28. 28.
    Tang X, Haubner R, Lux B et al (1995) J Phys II 5:1013. doi: Google Scholar
  29. 29.
    Won C-W, Chun B-S, Sohn HY (1993) J Mater Res 8:2702. doi: CrossRefGoogle Scholar
  30. 30.
    Leclercq G, Kamal M, Giraudon JM et al (1996) J Catal 158:142. doi: CrossRefGoogle Scholar
  31. 31.
    Kelly CM, Garg D, Dyer PN (1992) Thin Solid Films 219:103. doi: CrossRefGoogle Scholar
  32. 32.
    Medeiros FFP, Oliveira SAD, Souza CPD et al (2001) Mater Sci Eng A 315:58. doi: CrossRefGoogle Scholar
  33. 33.
    Gao L, Kear BH (1995) Nanostruct Mater 5:555. doi: CrossRefGoogle Scholar
  34. 34.
    Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley Pub. Co, LondonGoogle Scholar
  35. 35.
    Sara RW (1965) J Am Ceram Soc 48:253Google Scholar
  36. 36.
    Choi SI, Nam JS, Lee CM et al (2006) Curr Appl Phys 6:224. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Taegong Ryu
    • 1
  • H. Y. Sohn
    • 1
  • Kyu Sup Hwang
    • 1
  • Zhigang Z. Fang
    • 1
  1. 1.Department of Metallurgical EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations