Journal of Materials Science

, Volume 43, Issue 14, pp 5005–5013 | Cite as

The hydrothermal analogy role of ionic liquid in transforming amorphous TiO2 to anatase TiO2: elucidating effects of ionic liquids and heating method

  • Yen Hiu Liu
  • Chih Wei Lin
  • Min Chao ChangEmail author
  • Hsin Shao
  • Arnold Chang-Mou Yang


In this study, the specific coexistence of water and ionic liquid being the lower temperature thermal annealing condition for anatase crystallization of amorphous titania at ambient pressure was found. The test ionic liquids were 1-butyl-3-methylimidazolium hexafluorophosphate and 1-butyl-3-methylimidazolium tetrafluoroborate. After deep investigation, we found that there existed an analogy between our lower temperature thermal annealing treatment system (LTTAT) and hydrothermal treatment system. In LTTAT system, the ionic liquid played an important role in driving surface crystallization of amorphous TiO2 to the anatase phase by retaining a suitable amount of water through a dissolution–crystallization mechanism. We could observe higher hydroxyl group ratio of hydroxylated titanium compound from X-ray photoelectron spectroscopy (XPS) data during initial thermal annealing period. The self-assembly ability of ionic liquid then lead to kinetical dehydration and crystallization of hydroxylated titanium compound around it during the following annealing process. Based upon this proposition, the effects of different types of ionic liquid and its amount, temperature effect, and heating method on anatase crystallinity, characterized by X-ray diffraction (XRD), were investigated. It was found that different temperatures and microwave heating effect were observed for different types of ionic liquid. From these observations, it was pointed out that we could get better anatase crystallinity and good photodegradation performance by using the system containing ionic liquid having higher water-adsorbing ability and microwave heating annealing.


TiO2 Ionic Liquid Methylene Blue TiO2 Sample Amorphous TiO2 



The authors are grateful to Ministry of Economic affair (MOEA) of Taiwan for funding support. A complementary financial support from National Science Council of Taiwan is acknowledged.


  1. 1.
    Burnside SD, Shklover V, Barbě C, Comte P, Arendse F, Brooks K, Grãtzel M (1998) Chem Mater 10:2419. doi: CrossRefGoogle Scholar
  2. 2.
    Chiappe C, Pieraccini D (2005) J Phys Org Chem 18:275. doi: CrossRefGoogle Scholar
  3. 3.
    Antonietti M, Kuang D, Smarsly B, Zhou Y (2004) Angew Chem Int Ed 43:4988. doi: CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Jiang J, Yu S, Tao W, Ge H, Zhang G (2005) Chem Mater 17:6094. doi: CrossRefGoogle Scholar
  6. 6.
    Zhou Y, Antonietti M (2003) J Am Chem Soc 125:14960. doi: CrossRefGoogle Scholar
  7. 7.
    Nakashima T, Kimizuka N (2003) J Am Chem Soc 125:6386. doi: CrossRefGoogle Scholar
  8. 8.
    Yoo KS, Choi H, Dionysiou D (2004) Chem Commun 17:2000–2001. doi: CrossRefGoogle Scholar
  9. 9.
    Yoo KS, Choi H, Dionysiou D (2005) Catal Commun 6:259. doi: CrossRefGoogle Scholar
  10. 10.
    Yoo KS, Lee TG, Kim J (2005) Microporous Mesoporous Mater 84:211–217. doi: CrossRefGoogle Scholar
  11. 11.
    Galema SA (1997) Chem Soc Rev 26:233. doi: CrossRefGoogle Scholar
  12. 12.
    Hart JN, Cervini R, Cheng YB, Simon GP, Spiccia L (2004) Sol Energy Mater Sol Cells 84:135. doi: CrossRefGoogle Scholar
  13. 13.
    Choi H, Kim YJ, Varma RS, Dionysiou D (2006) Chem Mater 18:5377. doi: CrossRefGoogle Scholar
  14. 14.
    Liu Y, Li J, Wang M, Li Z, Liu H, Yang PHX, Li J (2005) Cryst Growth Des 5:1643. doi: CrossRefGoogle Scholar
  15. 15.
    Liu YH, Lin CW, Chang MC, Shao H, Yang ACM (2007) (Europacat VIII) 26–31 August 2007 Turku / Åbo, FinlandGoogle Scholar
  16. 16.
    Dominguez-Vidal A, Kaun N, Ayora-Caňada MJ, Lendl B (2007) J Phys Chem B 111:4446. doi: CrossRefGoogle Scholar
  17. 17.
    Katayanagi A, Nishikawa K, Shimozaki H, Miki K, Westh P, Koga Y (2004) J Phys Chem B 108:19451. doi: CrossRefGoogle Scholar
  18. 18.
    Salou M, Kiyozumi Y, Mizukami F, Nair P, Maeda K, Niwa S (1998) J Mater Chem 8:2125. doi: CrossRefGoogle Scholar
  19. 19.
    Yanagisawa K, Yamamoto Y, Feng Q, Yamasaki N (1998) J Mater Res 13:825. doi: CrossRefGoogle Scholar
  20. 20.
    Yu J, Wang G, Chemg B, Zhou M (2007) Appl Catal B 69:171CrossRefGoogle Scholar
  21. 21.
    Pouilleau J, Devilliers D, Groult H (1997) J Mater Sci 32:5645. doi: CrossRefGoogle Scholar
  22. 22.
    Shin H, Jung HS, Hong KS, Lee JK (2005) J Solid State Chem 178:15. doi: CrossRefGoogle Scholar
  23. 23.
    Cooper ER, Andrews CD, Wheatley PS, Webb PB, Wormald P, Morris RE (2004) Nature 430:1012. doi: CrossRefGoogle Scholar
  24. 24.
    Tran CD, Paolilacedra SHD, Oliverira D (2003) Appl Spectrosc 57:152. doi: CrossRefGoogle Scholar
  25. 25.
    Wang Y, Li H, Han S (2006) J Phys Chem B 110:24646. doi: CrossRefGoogle Scholar
  26. 26.
    Liu W, Zhao T, Zhang Y, Wang H, Yu M (2006) J Solut Chem 35:1337. doi: CrossRefGoogle Scholar
  27. 27.
    Tompsett GA, Conner WC, Yngvesson KS (2006) ChemPhysChem 7:296. doi: CrossRefGoogle Scholar
  28. 28.
    Komarneni S (2003) Curr Sci 85:1730Google Scholar
  29. 29.
    Wilson GJ, Will GD, Frost RL, Montgomery SA (2002) J Mater Chem 12:1787CrossRefGoogle Scholar
  30. 30.
    Murrugan AV, Samuel V, Ravi V (2006) Mater Lett 60:479. doi: CrossRefGoogle Scholar
  31. 31.
    Xu Y, Tian Z, Wang S, Hu Y, Wang L, Ma Y, Hou L, Yu J, Lin L (2006) Angew Chem Int Ed 45:3965. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yen Hiu Liu
    • 1
  • Chih Wei Lin
    • 1
  • Min Chao Chang
    • 2
    Email author
  • Hsin Shao
    • 2
  • Arnold Chang-Mou Yang
    • 1
  1. 1.Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchuTaiwan
  2. 2.Energy and Environmental Research LaboratoriesIndustrial Technology Research InstituteHsinchuTaiwan

Personalised recommendations