Advertisement

Journal of Materials Science

, Volume 43, Issue 14, pp 4996–5004 | Cite as

Effect of cation stoichiometry on the transport properties of calcium ruthenium oxide ceramics

  • Sezhian Annamalai
  • Igor Vidensky
  • Ian L. Pegg
  • Biprodas DuttaEmail author
Article

Abstract

Seebeck coefficient and electrical resistivity have been determined on a series of compounds having the general composition CanRu1−nOy. From property and structural considerations, these compounds have been divided into two categories: one group resembling Ca2RuO4 and the second category exhibiting properties similar to CaRuO3. While the former is an antiferromagnetic insulator, the latter is a paramagnetic metal. The Seebeck coefficient remains relatively unchanged within the members of the two groups, irrespective of the molar ratios of the cations. Even between the two groups of compounds, the Seebeck coefficient exhibits minimal difference even as the cation ratio (Ru/Ca) of the compounds is varied from 0.35 (n = 0.74) to 1.94 (n = 0.34). The resistivity, however, varies by nine orders of magnitude as the cation ratio is varied in the same range. Consequently, the resulting power factor (s2σ, where s is the Seebeck coefficient and σ is the electrical conductivity), which is a measure of the usefulness or thermopower conversion efficiency of a thermoelectric material, is found to vary by nine orders of magnitude.

Keywords

Power Factor RuO2 Seebeck Coefficient Thermoelectric Material Insulator Transition 

Notes

Acknowledgements

We gratefully acknowledge the contributions of Niveen Fahmy and Wei Zhao in sample preparation.

References

  1. 1.
    Cao G, McCall S, Shepard M, Crow JE, Guertin RP (1997) Phys Rev B 56:R2916. doi: https://doi.org/10.1103/PhysRevB.56.R2916 CrossRefGoogle Scholar
  2. 2.
    Nakatsuji S, Ikeda SI, Maeno Y (1997) J Phys Soc Jpn 66:1868. doi: https://doi.org/10.1143/JPSJ.66.1868 CrossRefGoogle Scholar
  3. 3.
    Callaghan A, Moller W, Ward R (1966) Inorg Chem 5:1572. doi: https://doi.org/10.1021/ic50043a023 CrossRefGoogle Scholar
  4. 4.
    Crawford MK, Harlow RL et al (2002) Phys Rev B 65:214412. doi: https://doi.org/10.1103/PhysRevB.65.214412 CrossRefGoogle Scholar
  5. 5.
    Maeno Y, Hashimoto H et al (1994) Nature 372:532. doi: https://doi.org/10.1038/372532a0 CrossRefGoogle Scholar
  6. 6.
    Cao G, McCall S et al (1997) Phys Rev Lett 78:1751. doi: https://doi.org/10.1103/PhysRevLett.78.1751 CrossRefGoogle Scholar
  7. 7.
    Eom CB, Cava RJ et al (1992) Science 258:1766. doi: https://doi.org/10.1126/science.258.5089.1766 CrossRefGoogle Scholar
  8. 8.
    Wang X, Xin Y et al (2004) App Phys Lett 85(25):6146CrossRefGoogle Scholar
  9. 9.
    Rane S, Prudenziati M, Morten B (2005). J Active Passive Elec Dev 1:123Google Scholar
  10. 10.
    Zurbuchen MA, Jia YF et al (2001) Appl Phys Lett 78:2351. doi: https://doi.org/10.1063/1.1364659 CrossRefGoogle Scholar
  11. 11.
    Braden M, Andre G, Nakatsuji S, Maeno Y (1998) Phys Rev B 58:847. doi: https://doi.org/10.1103/PhysRevB.58.847 CrossRefGoogle Scholar
  12. 12.
    Cao G, McCall S et al (2000) Phys Rev B 61:R5053. doi: https://doi.org/10.1103/PhysRevB.61.R5053 CrossRefGoogle Scholar
  13. 13.
    Fukazawa H, Maeno Y (2001) J Phys Soc Jpn 70:460. doi: https://doi.org/10.1143/JPSJ.70.460 CrossRefGoogle Scholar
  14. 14.
    Nakatsuji S, Maeno Y (2000) Phys Rev Lett 84:2666. doi: https://doi.org/10.1103/PhysRevLett.84.2666 CrossRefGoogle Scholar
  15. 15.
    Nakamura F, Goko T et al (2002) Phys Rev B 65:220402. doi: https://doi.org/10.1103/PhysRevB.65.220402 CrossRefGoogle Scholar
  16. 16.
    Gibb TC, Greatrex RG et al (1973) J Chem Soc, Dalton Trans 1253. doi: https://doi.org/10.1039/dt9730001253
  17. 17.
    Klein L, Antognazza L et al (1999) Phys Rev B 60:1448. doi: https://doi.org/10.1103/PhysRevB.60.1448 CrossRefGoogle Scholar
  18. 18.
    Felner I, Nowik I, Bradaric IM, Gospodinov M (2000). Phys Rev B 62:11332. doi: https://doi.org/10.1103/PhysRevB.62.11332 CrossRefGoogle Scholar
  19. 19.
    Friedt O, Braden M et al (2001) Phys Rev B. 63:174432CrossRefGoogle Scholar
  20. 20.
    Cox PA, Egdell RG et al (1983) J Phys C Solid State Phys 16:6221. doi: https://doi.org/10.1088/0022-3719/16/32/014 CrossRefGoogle Scholar
  21. 21.
    Cao G, McCall S, Shepard M, Crow JE, Guertin RP (1997) Phys Rev B 56:321. doi: https://doi.org/10.1103/PhysRevB.56.321 CrossRefGoogle Scholar
  22. 22.
    Raveau B, Maignan A (2003) Europhys News 34(6)Google Scholar
  23. 23.
    Hebert S, Martin C et al (2001) Proceedings of the 6th European workshop on thermoelectrics, FreiburgGoogle Scholar
  24. 24.
    Van der Pauw LJ (1958) Philips Res Rep 13:1Google Scholar
  25. 25.
    Mott NF, Davis EA (1979) Electronic processes in non-crystalline materials. Clarendon Press, LondonGoogle Scholar
  26. 26.
    Bossman AL, Crevecoeur C (1966) Phys Rev 144:763. doi: https://doi.org/10.1103/PhysRev.144.763 CrossRefGoogle Scholar
  27. 27.
    Klein Y, Hébert S et al (2006) Phys Rev B 73:052412. doi: https://doi.org/10.1103/PhysRevB.73.052412 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Sezhian Annamalai
    • 1
  • Igor Vidensky
    • 1
  • Ian L. Pegg
    • 1
  • Biprodas Dutta
    • 1
    Email author
  1. 1.Vitreous State LaboratoryThe Catholic University of AmericaWashingtonUSA

Personalised recommendations