Journal of Materials Science

, Volume 43, Issue 15, pp 5123–5130 | Cite as

Synthesis of magnetite nanoparticles by thermal decomposition of ferrous oxalate dihydrate

  • Andre Angermann
  • Jörg TöpferEmail author


Two different polymorphs of ferrous oxalate dihydrate were synthesized by precipitation of ferrous ions with oxalic acid: α-Fe(C2O4) · 2H2O with a monoclinic unit cell is obtained after precipitation and ageing at 90 °C, whereas the orthorhombic β-type is formed after precipitation at room temperature. The morphology of the oxalate crystals can be tailored from prismatic crystals of the α-polymorph over star-like aggregates of α/β-mixtures to non-agglomerated crystallites of β-oxalate. Thermal decomposition in air gives hematite at T ≥ 250 °C; if the thermolysis reaction is performed at low oxygen partial pressures (e.g., T = 500 °C and pO2 = 10−25 atm) magnetite is obtained. The synthesized magnetite is stoichiometric as signaled by lattice parameters of a0 = 8.39 Å. The thermal decomposition of ferrous oxalate is monitored by thermal analysis, XRD, and IR-spectroscopy. The morphology of the oxalate crystals is preserved during thermal decomposition; the oxalates are transformed into spinel particle aggregates of similar size and shape. The crystallite size of the magnetite particles increases with temperature and is 40 or 55 nm, if synthesized from β-oxalate at 500 °C or 700 °C, respectively. The saturation magnetization of the magnetite particles decreases with decreasing particle size. Since the particles are larger than the critical diameter for superparamagnetic behavior they display hysteresis behavior at room temperature.


Magnetite Oxalate Hematite Maghemite Magnetite Nanoparticles 



The authors thank Mrs. S. Müller and M. Friedrich (FH Jena) for oxalate preparations and SEM investigations, respectively.


  1. 1.
    Manasse E (1910) Rend Acc Naz Lincei 19:138Google Scholar
  2. 2.
    Mazzi F, Garavelli C (1957) Period Mineral 26:269Google Scholar
  3. 3.
    Carić S (1959) Bull Soc franc Min Crist 82:50Google Scholar
  4. 4.
    Deyrieux R, Peneloux A (1969) Bull Soc Chim Fr 8:2675Google Scholar
  5. 5.
    Rao V, Shashimohan AL, Biswas AB (1974) J Mater Sci 9:430–433. doi: CrossRefGoogle Scholar
  6. 6.
    Glenn Rupard R, Gallagher PK (1996) Thermochim Acta 272:11. doi: CrossRefGoogle Scholar
  7. 7.
    Frost RL, Weier ML (2004) J Therm Anal Calorim 75:277. doi: CrossRefGoogle Scholar
  8. 8.
    Mohamed MA, Galwey AK, Halawy SA (2005) Thermochim Acta 429:57. doi: CrossRefGoogle Scholar
  9. 9.
    Hermanek M, Zboril R, Mashlan M, Machala L, Schneeweiss O (2006) J Mater Chem 16:1273. doi: CrossRefGoogle Scholar
  10. 10.
    Hermanek M, Zboril R, Medrik I, Pechousek J, Gregor C (2007) J Am Chem Soc 129:10929. doi: CrossRefGoogle Scholar
  11. 11.
    Zhou W, Tang K, Zeng S, Qi Y (2008) Nanotechnology 19:065602. doi: CrossRefGoogle Scholar
  12. 12.
    Cornell RM, Schwertfeger U (2003) The Iron Oxides, Viley VCHGoogle Scholar
  13. 13.
    Hergt R, Hiergeist R, Zeissberger M, Schüler D, Heyen U, Hilger I et al (2005) J Magn Magn Mater 293(205):80–86CrossRefGoogle Scholar
  14. 14.
    Welo LA, Baudisch O (1925) Phil Mag 50(IV):399CrossRefGoogle Scholar
  15. 15.
    David I, Welch AJE (1956) Trans Faraday Soc 52:1642. doi: CrossRefGoogle Scholar
  16. 16.
    Massart R (1981) IEEE Trans Magn 17:1247. doi: CrossRefGoogle Scholar
  17. 17.
    Faivre D, Agrinier P, Menguy N, Zuddas P, Pachana K, Gloter A et al (2004) Geochim Cosmochim Acta 68(21):4395. doi: CrossRefGoogle Scholar
  18. 18.
    Vassierres L, Chaneac C, Tronc E, Jolivet JP (1998) J Colloid Interface Sci 205:205. doi: CrossRefGoogle Scholar
  19. 19.
    Mürbe J, Rechtenbach A, Töpfer J (2008) Mater Chem Phys 110:426. doi: CrossRefGoogle Scholar
  20. 20.
    Dutz S, Hergt R, Mürbe J, Müller R, Zeisberger M, Andrä W et al (2007) J Magn Magn Mater 308:305. doi: CrossRefGoogle Scholar
  21. 21.
    Xuan S, Chen M, Hao L, Jiang W, Gong X, Hu Y et al (2008) J Magn Magn Mater 320:164. doi: CrossRefGoogle Scholar
  22. 22.
    Gabal MA, Ata-Allah SS (2004) J Phys Chem Solids 65:995. doi: CrossRefGoogle Scholar
  23. 23.
    Muan A, Osborn EF (1965) Phase equilibria among oxides in steelmaking. Addison-Wesley Publ. Company, Redding, USAGoogle Scholar
  24. 24.
    Jørgensen JE, Mosegaard L, Thomsen LE, Jensen TR, Hanson JC (2007) J Solid State Chem 180:180. doi: CrossRefGoogle Scholar
  25. 25.
    Gillot B (1994) Vibrat Spectr 6:127. doi: CrossRefGoogle Scholar
  26. 26.
    Kustova GN, Burgina EB, Sadykov VA, Poryvaev SG (1992) Phys Chem Miner 18:379. doi: CrossRefGoogle Scholar
  27. 27.
    Musić S, Popović S, Ristić M (1993) J Mater Sci 28:632. doi: CrossRefGoogle Scholar
  28. 28.
    White WB, DeAngelis BA (1967) Spectrochimica Acta 23A:985CrossRefGoogle Scholar
  29. 29.
    Ishii M, Nakahira M, Yamanaka T (1972) Solid State Commun 11:209. doi: CrossRefGoogle Scholar
  30. 30.
    Coey JMD, Khalafalla D (1972) Phys Status Solidi 11:229. a. doi: CrossRefGoogle Scholar
  31. 31.
    Dunlop DJ (1973). Geophys Res 78(11):1780. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of SciTecUniversity of Applied SciencesJenaGermany

Personalised recommendations