Advertisement

Journal of Materials Science

, Volume 43, Issue 15, pp 5139–5142 | Cite as

Effect of HNO3 on crystalline phase evolution in lithium silicate powders prepared by sol–gel processes

  • Bo ZhangEmail author
  • Allan J. Easteal
Article

Abstract

An interesting observation is reported on the dramatic effect of HNO3 on crystalline phase evolution in the 33.3 mol% Li2O–SiO2 glass–ceramic (stoichiometric composition of lithium disilicate Li2Si2O5, LS2) prepared by sol–gel processes from tetraethylorthosilicate (TEOS) and lithium ethoxide precursors. Nitric acid (65%), in molar ratio HNO3/TEOS = 0.1, was added either to the precursor sol or to 95 °C dried gel. The product, which is amorphous at temperatures below 450 °C, transforms into crystalline lithium metasilicate (Li2SiO3, LS) at around 550 °C (starting temperature ∼450 °C), instead of forming crystalline LS2. Phase separation in the glassy phase may be responsible for the formation of lithium metasilicate. XRD, 29Si MAS, and 7Li static NMR were used to follow the crystallization evolution and network structures of the materials heat-treated at various temperatures.

Keywords

Lithium Ethoxide Li2O LiOH LiNO3 

Notes

Acknowledgements

The contribution of Michael Walker to the NMR work is gratefully acknowledged. This work was supported by the University of Auckland through the award of a Postdoctoral Fellowship to Bo Zhang.

References

  1. 1.
    Nakagawa K, Ohashi T (1998) J Electrochem Soc 145:1344. doi: https://doi.org/10.1149/1.1838462 CrossRefGoogle Scholar
  2. 2.
    Nyten A, Abouimrane A, Armand M, Gustafsson T, Thomas JO (2005) Electrochem Commun 7:156. doi: https://doi.org/10.1016/j.elecom.2004.11.008 CrossRefGoogle Scholar
  3. 3.
    Klein LC (1989) J Non-Cryst Solid State Ionics 32/33:639. doi: https://doi.org/10.1016/0167-2738(89)90339-1 CrossRefGoogle Scholar
  4. 4.
    Johnson CE, Kummerer KR, Roth E (1988) J Nucl Mater 155–157:188. doi: https://doi.org/10.1016/0022-3115(88)90240-1 CrossRefGoogle Scholar
  5. 5.
    Soares PC Jr, Zanotto ED, Fokin VM, Jain H (2003) J Non-Cryst Solids 331(1–3):217. doi: https://doi.org/10.1016/j.jnoncrysol.2003.08.075 CrossRefGoogle Scholar
  6. 6.
    James PF, Iqbal Y, Jais US, Jordery S, Lee WE (1997) J Non-Cryst Solids 219:17. doi: https://doi.org/10.1016/S0022-3093(97)00247-0 CrossRefGoogle Scholar
  7. 7.
    Iqbal Y, Lee WE, Holland D, James PF (1998) J Non-Cryst Solids 224:1. doi: https://doi.org/10.1016/S0022-3093(97)00453-5 CrossRefGoogle Scholar
  8. 8.
    Dupree R, Holland D, Mortuza MG (1990) J Non-Cryst Solids 116(2–3):148 doi: https://doi.org/10.1016/0022-3093(90)90687-H CrossRefGoogle Scholar
  9. 9.
    Holland D, Iqbal Y, James PF, Lee WE (1998) J Non-Cryst Solids 232–234:140. doi: https://doi.org/10.1016/S0022-3093(98)00381-0 CrossRefGoogle Scholar
  10. 10.
    Li P, Ferguson BA, Francis LF (1995) J Mater Sci 30(16):4076. doi: https://doi.org/10.1007/BF00360711 CrossRefGoogle Scholar
  11. 11.
    Dupree R, Holland D, Mortuza MG, Smith ME, Chen A, James PF (1990) Magn Resonance Chem 2:S89. doi: https://doi.org/10.1002/mrc.1260281315 CrossRefGoogle Scholar
  12. 12.
    Klein LC (1985) Ann Rev Mater Sci 15:227CrossRefGoogle Scholar
  13. 13.
    Zhang Bo, Bhattacharyya D, Easteal AJ, Edmonds NR (2007) J Am Ceram Soc 90:1592. doi: https://doi.org/10.1111/j.1551-2916.2007.01561.x CrossRefGoogle Scholar
  14. 14.
    Zhang B, Nieuwoudt M, Easteal AJ (2008) J Am Ceram Soc, OnlineEarly articles, 4-April-2008. doi: https://doi.org/10.1111/j.1551-2916.2008.02389.x CrossRefGoogle Scholar
  15. 15.
    Szu S-P, Klein LC, Greenblatt M (1990) J Non-Cryst Solids 121(1–3):90. doi: https://doi.org/10.1016/0022-3093(90)90111-X CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Chemistry and Centre for Advanced Composite MaterialsThe University of AucklandAucklandNew Zealand
  2. 2.Industrial Research Ltd.WellingtonNew Zealand

Personalised recommendations