Advertisement

Journal of Materials Science

, Volume 43, Issue 14, pp 4979–4987 | Cite as

Fabrication and performances of epoxy/multi-walled carbon nanotubes/piezoelectric ceramic composites as rigid piezo-damping materials

  • Sheng Tian
  • Xiaodong WangEmail author
Article

Abstract

Piezo-damping epoxy-based composites containing various amounts of multi-walled carbon nanotubes (CNT) and piezoelectric lead zirconate titanate (PZT) were prepared, and their performances were investigated. The composites exhibited a percolation threshold in the range of 1–1.5 g CNT per 100 g epoxy, in which a continuous electro-conductive network formed. Dynamic mechanical thermal analysis reveals that the loss factors of the composites were improved by incorporation of the PZT and the CNT at above critical electrical percolation loading. Based on this new type rigid piezo-damping material, the PZT contributes to the transformation of mechanical noise and vibration energies into electric energy, while the CNT serve in shorting of the generated electric current to the external circuit. Thermal stability and mechanical properties were also improved by incorporating these two fillers. An optimum formulation for the rigid piezo-damping materials can be designed on the basis of the results of this study.

Keywords

Epoxy Percolation Threshold Loss Factor Epoxy Matrix Interpenetrate Polymer Network 

Notes

Acknowledgement

The authors greatly appreciated financial supports from the National Natural Science Foundation of China (Grant No. 50573006).

References

  1. 1.
    Vinogradov AM, Schmidt VH, Tuthill GF, Bohannan GW (2004) Mech Mater 36:1007. doi: https://doi.org/10.1016/j.mechmat.2003.04.002 CrossRefGoogle Scholar
  2. 2.
    Rajoria H, Jalili N (2005) Compos Sci Technol 65:2079. doi: https://doi.org/10.1016/j.compscitech.2005.05.015 CrossRefGoogle Scholar
  3. 3.
    Zhang C, Sheng JF, Ma CA, Sumita M (2005) Mater Lett 59:3648. doi: https://doi.org/10.1016/j.matlet.2005.07.004 CrossRefGoogle Scholar
  4. 4.
    Kang S, Hong SI, Choe CR, Park M, Rim S, Kim J (2001) Polymer (Guildf) 42:879. doi: https://doi.org/10.1016/S0032-3861(00)00392-X CrossRefGoogle Scholar
  5. 5.
    Chandra R, Singh SP, Gupta K (1999) Compos Struct 46:41. doi: https://doi.org/10.1016/S0263-8223(99)00041-0 CrossRefGoogle Scholar
  6. 6.
    Salamone JC (1996) Encyclopedia of polymeric materials. CRC Press, New YorkGoogle Scholar
  7. 7.
    Shih YF, Jeng RJ (2002) J Appl Polym Sci 86:1904. doi: https://doi.org/10.1002/app.11145 CrossRefGoogle Scholar
  8. 8.
    Chen Q, Ge H, Chen D, He M, Yu X (1994) J Appl Polym Sci 54:1191. doi: https://doi.org/10.1002/app.1994.070540901 CrossRefGoogle Scholar
  9. 9.
    Lin MS, Lee ST (1997) Polymer (Guildf) 28:53. doi: https://doi.org/10.1016/S0032-3861(96)00484-3 CrossRefGoogle Scholar
  10. 10.
    Hsieh KH, Chiang YC, Chen YC, Chiu WY, Ma CCM (1992) Angew Makromol Chem 194:15. doi: https://doi.org/10.1002/apmc.1992.051940102 CrossRefGoogle Scholar
  11. 11.
    Gu J, Wu G, Zhang Q (2007a) Scr Mater 57:529. doi: https://doi.org/10.1016/j.scriptamat.2007.05.019 CrossRefGoogle Scholar
  12. 12.
    Gu J, Wu G, Zhang Q (2007b) Mater Sci Eng A 452:614. doi: https://doi.org/10.1016/j.msea.2006.11.006 CrossRefGoogle Scholar
  13. 13.
    Horia M, Aokia T, Ohiraa Y, Yano S (2001) Compos Part A Appl Sci Manuf 32:287. doi: https://doi.org/10.1016/S1359-835X(00)00141-X CrossRefGoogle Scholar
  14. 14.
    Yan X, Zhang H, Sumita M (2001) J Dong Hua Univ Eng Ed 18:11Google Scholar
  15. 15.
    Liao YH, Marietta-Tondin O, Liang Z, Zhang C, Wang B (2004) Mater Sci Eng A 385:175. doi: https://doi.org/10.1016/j.msea.2004.06.031 CrossRefGoogle Scholar
  16. 16.
    Lv L, Bai S, Zhang H, Wang J, Yang J, Xiao J (2006) Mater Sci Eng A 433:121. doi: https://doi.org/10.1016/j.msea.2006.06.031 CrossRefGoogle Scholar
  17. 17.
    Bryning MB, Islam MF, Kikkawa JM, Yodh AG (2005) Adv Mater 17:1186. doi: https://doi.org/10.1002/adma.200401649 CrossRefGoogle Scholar
  18. 18.
    Kim YJ, Shin TS, Choi HD, Kwon JH, Chung YC, Yoon HG (2005) Carbon 43:23. doi: https://doi.org/10.1016/j.carbon.2004.08.015 CrossRefGoogle Scholar
  19. 19.
    Allaoui A, Bai S, Cheng HM, Bai JB (2002) Compos Sci Technol 62:1993. doi: https://doi.org/10.1016/S0266-3538(02)00129-X CrossRefGoogle Scholar
  20. 20.
    Thostenson ET, Chou TW (2006) Carbon 44:3022. doi: https://doi.org/10.1016/j.carbon.2006.05.014 CrossRefGoogle Scholar
  21. 21.
    Kim ST, Lim JY, Park BJ, Choi HJ (2007) Macromol Chem Phys 208:514. doi: https://doi.org/10.1002/macp.200600543 CrossRefGoogle Scholar
  22. 22.
    Fang FF, Choi HJ (2008) J Appl Phys 103:07A301CrossRefGoogle Scholar
  23. 23.
    Law HH, Rossiter PL, Koss LL, Simon GP (1995) J Mater Sci 30:2648. doi: https://doi.org/10.1007/BF00362148 CrossRefGoogle Scholar
  24. 24.
    Gojny FH, Wichmann MHG, Fiedler B, Kinloch IA, Bauhofer W, Windle AH et al (2006) Polymer (Guildf) 47:2036. doi: https://doi.org/10.1016/j.polymer.2006.01.029 CrossRefGoogle Scholar
  25. 25.
    Nan CW, Shi Z, Lin Y (2003) Chem Phys Lett 375:666. doi: https://doi.org/10.1016/S0009-2614(03)00956-4 CrossRefGoogle Scholar
  26. 26.
    Liang JZ, Li RKY, Tjong SC (2000). Polym Test 19:213. doi: https://doi.org/10.1016/S0142-9418(99)00005-7 CrossRefGoogle Scholar
  27. 27.
    Tsantzalis S, Karapappas P, Vavouliotis A, Tsotra P, Paipetis A, Kostopoulos V et al (2007) Compos Part A Appl Sci Manuf 38:1076. doi: https://doi.org/10.1016/j.compositesa.2006.04.015 CrossRefGoogle Scholar
  28. 28.
    Gu JH, Zhang XN, Gu MY, Gu M, Wang XK (2004) J Alloy Comp 372:304. doi: https://doi.org/10.1016/j.jallcom.2003.10.021 CrossRefGoogle Scholar
  29. 29.
    Hyun YH, Lim ST, Choi HJ, Jhon MS (2001) Macromolecules 34:8084. doi: https://doi.org/10.1021/ma002191w CrossRefGoogle Scholar
  30. 30.
    Liu H, Zhang W, Zheng S (2005). Polymer (Guildf) 46:157. doi: https://doi.org/10.1016/j.polymer.2004.10.078 CrossRefGoogle Scholar
  31. 31.
    Bauer F, Decker U, Ernst H, Findeisen M, Langguth H, Mehnert R et al (2006) Int J Adhes 26:567. doi: https://doi.org/10.1016/j.ijadhadh.2005.11.001 CrossRefGoogle Scholar
  32. 32.
    Wen JY, Wilkes GL (1996) Chem Mater 8:1667. doi: https://doi.org/10.1021/cm9601143 CrossRefGoogle Scholar
  33. 33.
    Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Polymer (Guildf) 44:5893. doi: https://doi.org/10.1016/S0032-3861(03)00539-1 CrossRefGoogle Scholar
  34. 34.
    Sandler JKW, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH (1999) Polymer (Guildf) 40:5967. doi: https://doi.org/10.1016/S0032-3861(99)00166-4 CrossRefGoogle Scholar
  35. 35.
    Argon AS, Cohen RE (2003) Polymer (Guildf) 44:6013. doi: https://doi.org/10.1016/S0032-3861(03)00546-9 CrossRefGoogle Scholar
  36. 36.
    Bartczak Z, Argon AS, Cohen RE, Weinberg M (1999) Polymer (Guildf) 40:2347. doi: https://doi.org/10.1016/S0032-3861(98)00444-3 CrossRefGoogle Scholar
  37. 37.
    Thio YS, Argon AS, Cohen RE, Weinberg M (2002) Polymer (Guildf) 43:3661. doi: https://doi.org/10.1016/S0032-3861(02)00193-3 CrossRefGoogle Scholar
  38. 38.
    Wang J, Fang Z, Gu A, Xu L, Liu F (2006). J Appl Polym Sci 100:97. doi: https://doi.org/10.1002/app.22647 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, School of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations