Journal of Materials Science

, Volume 43, Issue 14, pp 4972–4978 | Cite as

Effect of the presence of excess ammonium ions on the clay surface on permeation properties of epoxy nanocomposites

  • V. MittalEmail author


Epoxy nanocomposites with commercially and self-modified montmorillonites of different cation exchange capacities carrying ammonium modifications of various chemical architectures were synthesized using solution casting approach. The commercially treated montmorillonites were observed to contain a large excess of unbound ammonium ions on the surface, which had a negative impact on the permeation properties of the composites owing to the suspected interactions of these unbound ammonium ions with the epoxy polymer. The permeation behavior was significantly improved when self-modified clays free of any excess ammonium modification were used. The microstructure development was unaffected by the physical state of the clay surface indicating that the potential changes in the polymer properties at the interface as well as interfacial interactions in the composites carrying the commercially modified clays may have led to increase in the free volume. Optimal preparation of the clay surface holds the key to achieve enhancement in the composite performance.


Montmorillonite Nanocomposite Film Neat Epoxy Clay Surface Sodium Bentonite 


  1. 1.
    Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T et al (1993) J Mater Res 8:1179. doi: CrossRefGoogle Scholar
  2. 2.
    Usuki A, Kawasumi M, Kojima Y, Okada A, Kurauchi T, Kamigaito O (1993) J Mater Res 8:1174. doi: CrossRefGoogle Scholar
  3. 3.
    Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O (1993) J Polym Sci Part Polym Chem 32:983. doi: CrossRefGoogle Scholar
  4. 4.
    Bailey SW (1984) In: Bailey SW (ed) Reviews in mineralogy. Virginia Polytechnic Institute and State University, Blacksburg, VAGoogle Scholar
  5. 5.
    Bailey SW (1980) In: Brindley GW, Brown G (eds) Crystal structure of clay minerals and their x-ray identification. Mineralogical Society, LondonGoogle Scholar
  6. 6.
    Theng BKG (1974) The chemistry of clay-organic reactions. Adam Hilger, LondonGoogle Scholar
  7. 7.
    Lagaly G, Beneke K (1991) Colloid Polym Sci 269:1198. doi: CrossRefGoogle Scholar
  8. 8.
    Giannelis EP (1996) Adv Mater 8:29. doi: CrossRefGoogle Scholar
  9. 9.
    Gilman JW, Jackson CL, Morgan AB, Harris R, Manias E, Giannelis EP et al (2000) Chem Mater 12:1866. doi: CrossRefGoogle Scholar
  10. 10.
    LeBaron PC, Wang Z, Pinavaia TJ (1999) Appl Clay Sci 15:11. doi: CrossRefGoogle Scholar
  11. 11.
    Alexandre M, Dubois P (2000) Mater Sci Eng Rep 28:1. doi: CrossRefGoogle Scholar
  12. 12.
    Osman MA, Mittal V, Morbidelli M, Suter UW (2003) Macromolecules 36:9851. doi: CrossRefGoogle Scholar
  13. 13.
    May CA (1988) Epoxy resins chemistry and technology, 2nd edn. Dekker, New YorkGoogle Scholar
  14. 14.
    Lee H, Neville K (1967) Handbook of epoxy resins. McGraw-Hill, New YorkGoogle Scholar
  15. 15.
    Ellis B (1993) Chemistry and technology of epoxy resins. Blackie Academic & Professional, LondonCrossRefGoogle Scholar
  16. 16.
    Messersmith PB, Giannelis EP (1994) Chem Mater 6:1719. doi: CrossRefGoogle Scholar
  17. 17.
    Lan T, Kaviratna PD, Pinnavaia TJ (1995) Chem Mater 7:2144. doi: CrossRefGoogle Scholar
  18. 18.
    Zilg C, Mulhaupt R, Finter J (1999) Macromol Chem Phys 200:661. doi:10.1002/(SICI)1521-3935(19990301)200:3<661::AID-MACP661>3.0.CO;2-4CrossRefGoogle Scholar
  19. 19.
    Brown JM, Curliss D, Vaia RA (2000) Chem Mater 12:3376. doi: CrossRefGoogle Scholar
  20. 20.
    Zerda AS, Lesser AJ (2001) J Polym Sci Part B Polym Phys 39:1137. doi: CrossRefGoogle Scholar
  21. 21.
    Kornmann X, Lindberg H, Berglund LA (2001) Polymer (Guildf) 42:1303. doi: CrossRefGoogle Scholar
  22. 22.
    Kornmann X, Thomann R, Mulhaupt R, Finter J, Berglund L (2002) J Appl Polym Sci 86:2643. doi: CrossRefGoogle Scholar
  23. 23.
    Kong D, Park CE (2003) Chem Mater 15:419. doi: CrossRefGoogle Scholar
  24. 24.
    Chin IJ, Thurn-Albrecht T, Kim HC, Russell TP, Wang J (2001) Polymer (Guildf) 42:5947. doi: CrossRefGoogle Scholar
  25. 25.
    Osman MA, Atallah A, Suter UW (2004) Polymer (Guildf) 45:1177. doi: CrossRefGoogle Scholar
  26. 26.
    Morgan AB, Harris JD (2003) Polymer (Guildf) 44:2313. doi: CrossRefGoogle Scholar
  27. 27.
    Kadar F, Szazdi L, Fekete E, Pukanszky B (2006) Langmuir 22:7848. doi: CrossRefGoogle Scholar
  28. 28.
    Osman MA, Ploetze M, Suter UW (2003) J Mater Chem 13:2359. doi: CrossRefGoogle Scholar
  29. 29.
    Osman MA, Mittal V, Morbidelli M, Suter UW (2004) Macromolecules 37:7250. doi: CrossRefGoogle Scholar
  30. 30.
    Osman MA, Ploetze M, Skrabal P (2004) J Phys Chem B 108:2580. doi: CrossRefGoogle Scholar
  31. 31.
    Osman MA, Mittal V, Suter UW (2007) Macromol Chem Phys 208:68. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Chemistry and Applied Biosciences, Institute of Chemical and BioengineeringETH ZurichZurichSwitzerland
  2. 2.BASF SELudwigshafenGermany

Personalised recommendations