Journal of Materials Science

, Volume 43, Issue 15, pp 5143–5156 | Cite as

An investigation of the structure–property relationships in melt-processable high-acrylonitrile copolymer filaments

  • Shawn R. HutchinsonEmail author
  • Alan E. Tonelli
  • Buphender S. Gupta
  • David R. Buchanan


A comprehensive investigation was undertaken to understand why the structure of a high-acrylonitrile (AN) resin renders it melt processable, how it affects the microstructure, and what filament properties it supports. High-AN homo- and copolymers have excellent chemical and ultraviolet light resistances that make them suited for many engineered industrial applications. Traditionally, these AN-copolymers are dissolved in a solvent and extruded into fibers by dry and wet spinning, because they tend to degrade rather than melt. Recent advances in copolymer synthesis have created the first AN-resins that can be melt processed, and, are produced more economically and in an environmentally friendly way. The block distributions were examined using solution nuclear magnetic resonance. Thermal behavior of the solid-to-ductile transitions was observed with differential scanning calorimetry to gain insight into the nature of the temperature-dependent solid-state interactions between chains. Filament extrusion was conducted utilizing a range of parameters to obtain filaments varying in structures and properties. Wide-angle X-ray diffraction was used to gain insight into the solid-state conformations and organization of the copolymer chains. It is concluded that melt-extruded filaments do not develop a distinct semi-crystalline morphology, but instead tend to develop a paracrystalline ordered structure. Mechanical properties can be varied, and under optimal conditions, compare favorably with those found in other melt-extruded polymer fibers that are not, resistant to chemical and UV exposure.


Draw Ratio Methyl Acrylate Vinyl Acetate Acrylic Fiber Comonomer Content 



The Institute of Textile Technology in Raleigh, NC is gratefully acknowledged for research funding.


  1. 1.
    Frushour B, Knorr R (1985) In: Lewin M, Pearce E (eds) Handbook of fiber chemistry, vol 4. Marcel Dekker, New YorkGoogle Scholar
  2. 2.
    Wade B, Knorr R (1985) In: Masson J (ed) Acrylic fiber technology and applications. Marcel Dekker, New YorkGoogle Scholar
  3. 3.
    Dunn P, Ennis B (1970) J Appl Polym Sci 14:1795. doi: CrossRefGoogle Scholar
  4. 4.
    Korte S (1999) In: Brandrup J, Emmergut E, Grulke E (eds) Polymer handbook. John Wiley, New YorkGoogle Scholar
  5. 5.
    Mandelkern L (2002) Crystallization of polymers, vol 1. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  6. 6.
    Lindenmeyer P, Hosemann R (1963) J Appl Phys 34:42. doi: CrossRefGoogle Scholar
  7. 7.
    Bohn C, Schaefgen J, Statton W (1961) J Polym Sci 55:531. doi: CrossRefGoogle Scholar
  8. 8.
    Yamadera R, Murano M (1967) J Polym Sci A 5:1059. doi: CrossRefGoogle Scholar
  9. 9.
    Bajaj P, Padmanaban M, Gandhi R (1985) Polymer (Guildf) 26:391. doi: CrossRefGoogle Scholar
  10. 10.
    Schaefer J (1971) Macromolecules 4:105. doi: CrossRefGoogle Scholar
  11. 11.
    Hobson R, Windle A (1993) Polymer (Guildf) 34:3582. doi: CrossRefGoogle Scholar
  12. 12.
    Minagawa M, Ute K, Kitayama T et al (1994) Macromolecules 27:3669. doi: CrossRefGoogle Scholar
  13. 13.
    Minagawa M, Taira T, Yabuta Y et al (2001) Macromolecules 34:3679. doi: CrossRefGoogle Scholar
  14. 14.
    Lee L, Register R (2005) Macromolecules 38:1216. doi: CrossRefGoogle Scholar
  15. 15.
    Flory P (1958) J Trans Faraday Soc 51:848. doi: CrossRefGoogle Scholar
  16. 16.
    Eby R (1963) J Appl Phys 34:2442. doi: CrossRefGoogle Scholar
  17. 17.
    Flory P (1949) J Chem Phys 17:223. doi: CrossRefGoogle Scholar
  18. 18.
    Lewis F, Mayo F, Hulse W (1945) J Am Chem Soc 67:1701. doi: CrossRefGoogle Scholar
  19. 19.
    Smierciak R, Wardlow E, Lawrence B (1997) US Patent 5 602 222Google Scholar
  20. 20.
    Dimitratos J, El-Aasser M, Georgakis C et al (1990) J Appl Polym Sci 40:1005. doi: CrossRefGoogle Scholar
  21. 21.
    Henrici-Olive G, Olive S (1979) Adv Polym Sci 32:128Google Scholar
  22. 22.
    Holland V (1960) J Polym Sci XLIII:572. doi: CrossRefGoogle Scholar
  23. 23.
    Holland V, Lindenmeyer P, Mitchell S et al (1962) J Polym Sci 62:145. doi: CrossRefGoogle Scholar
  24. 24.
    Klement J, Geil P (1968) J Polym Sci A-2 6:1381CrossRefGoogle Scholar
  25. 25.
    Hinrichsen V (1972) J Polym Sci C 38:303CrossRefGoogle Scholar
  26. 26.
    Joh Y (1979) J Polym Sci A-1 17:4051Google Scholar
  27. 27.
    Kulshreshtha A, Garg V, Sharma Y et al (1986) J Appl Polym Sci 31:1413. doi: CrossRefGoogle Scholar
  28. 28.
    Grobelny J, Sokol M, Turska E (1989) Polymer (Guildf) 30:1187. doi: CrossRefGoogle Scholar
  29. 29.
    Hutchinson S (2005) M.S. Thesis, North Carolina State University, Raleigh NC, USAGoogle Scholar
  30. 30.
    Odian G (2004) Principles of polymerization. Wiley-Interscience, Hoboken, NJCrossRefGoogle Scholar
  31. 31.
    Gupta A, Singhal R, Bajaj P (1983) J Appl Polym Sci 28:1167. doi: CrossRefGoogle Scholar
  32. 32.
    Stefani R, Chevreton M, Garnier M et al (1960) Compt Rend 251:2174Google Scholar
  33. 33.
  34. 34.
    Moseley W (1960) J Appl Polym Sci III:266. doi: CrossRefGoogle Scholar
  35. 35.
    Henrici-Olive G, Olive S, Frushour B (1986) Makromol Chem 187:1801. doi: CrossRefGoogle Scholar
  36. 36.
    Azuma C, Dias M, Mano E (1995) Polym Bull 34:593. doi: CrossRefGoogle Scholar
  37. 37.
    Brar A, Sunita (1991) In: Sivaram S (ed) Polymer science, vol 2. Tata McGraw-Hill, New DelhiGoogle Scholar
  38. 38.
    Brar A, Sunita (1992) J Polym Sci A 30:2549. doi: CrossRefGoogle Scholar
  39. 39.
    Bunsell A, Hearle J, Konopasek L et al (1974) J Appl Polym Sci 18:2229. doi: CrossRefGoogle Scholar
  40. 40.
    Xue T, McKinney M, Wilkie C (1997) Polym Degrad Stabil 58:193. doi: CrossRefGoogle Scholar
  41. 41.
    Ward I (1997) In: Ward I (ed) Structure and properties of oriented polymers. Chapman & Hall, LondonCrossRefGoogle Scholar
  42. 42.
    Kumamaru F, Kajiyama T, Takayanagi M (1980) J Cryst Growth 48:202. doi: CrossRefGoogle Scholar
  43. 43.
    Mehta R (1999) In: Brandrup J, Immergut E, Grulke E (eds) Polymer handbook. John Wiley, New YorkGoogle Scholar
  44. 44.
    Kerbow D, Sperati C (1999) In: Brandrup J, Immergut E, Grulke E (eds) Polymer handbook. John Wiley, New YorkGoogle Scholar
  45. 45.
    Morton W, Hearle J (1993) Physical properties of textile fibers. Textile Institute, ManchesterGoogle Scholar
  46. 46.
    Hinrichsen V (1971) Angew Makromol Chem 285:121CrossRefGoogle Scholar
  47. 47.
    Frushour B (1981) Polym Bull 4:305. doi: CrossRefGoogle Scholar
  48. 48.
    Frushour B (1982) Polym Bull 7:1. doi: CrossRefGoogle Scholar
  49. 49.
    Frushour B (1984) Polym Bull 11:375. doi: CrossRefGoogle Scholar
  50. 50.
    Frushour B (1980) Bull Am Phys Soc 25:352Google Scholar
  51. 51.
  52. 52.
    Falkai V (1995) In: Masson J (ed) Acrylic fiber technology and applications. Marcel Dekker, New YorkGoogle Scholar
  53. 53.
    Lauterberg W, Kimmer W, Schmolke R (1968) Deu Textiltech 18:657Google Scholar
  54. 54.
    Tonelli A (1974) Macromolecules 10:716. doi: CrossRefGoogle Scholar
  55. 55.
    Tonelli A (1977) Macromolecules 7:632. doi: CrossRefGoogle Scholar
  56. 56.
    Frushour B (1995) In: Masson J (ed) Acrylic fiber technology and applications. Marcel Dekker, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Shawn R. Hutchinson
    • 1
    Email author
  • Alan E. Tonelli
    • 1
  • Buphender S. Gupta
    • 1
  • David R. Buchanan
    • 1
  1. 1.College of TextilesNorth Carolina State UniversityRaleighUSA

Personalised recommendations