Advertisement

Journal of Materials Science

, Volume 43, Issue 23–24, pp 7409–7417 | Cite as

Mechanical properties and corrosion behaviour of ultrafine-grained AA6082 produced by equal-channel angular pressing

  • Matthias HockaufEmail author
  • Lothar W. Meyer
  • Daniela Nickel
  • Gert Alisch
  • Thomas Lampke
  • Bernhard Wielage
  • Lutz Krüger
Ultrafine-Grained Materials

Abstract

The mechanical properties and corrosion behaviour of AA6082 with ultrafine-grained (UFG) microstructure were investigated. The material was processed by equal-channel angular pressing (ECAP) up to eight extrusions at room temperature in a 90°-die with active backpressure. Besides the peak-aged temper, which provides maximum strengths and strongly reduced ductility, the solution heat treated condition was considered as well. Combined with post-ECAP aging, an optimum of high strength, ductility and impact toughness was achieved. The corrosion investigations and the examination of the corrosion damage of the UFG-materials show higher pitting corrosion resistance compared to the unprocessed material. The optimised condition was used for the production of screw prototypes which showed appreciable higher strength and ductility compared to the identically manufactured screws from the CG counterpart. Such materials are potential candidates to be used for several engineering applications such as high strength screws even at higher temperatures.

Keywords

Corrosion Behaviour Impact Toughness Corrosion Damage Corrosion Characteristic Commercial AA6082 

Notes

Acknowledgements

The authors gratefully acknowledge the Deutsche Forschungsgemeinschaft (DFG) for supporting this work carried out within the framework of Sonderforschungsbereich 692 (Collaborative Research Center; A2, B2). The authors would like to thank Dr. Harry Podlesak for performing the STEM investigations.

References

  1. 1.
    Segal VM, Reznikov AE, Drobyshevskiy AE, Kopylov VI (1981) Russ Metall 7 (English translation)Google Scholar
  2. 2.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881. doi: https://doi.org/10.1016/j.pmatsci.2006.02.003 CrossRefGoogle Scholar
  3. 3.
    Horita Z, Fujinami T, Nemoto M, Langdon TG (2000) Metall Mater Trans A Phys Metall Mater Sci 31:691. doi: https://doi.org/10.1007/s11661-000-0011-8 CrossRefGoogle Scholar
  4. 4.
    Horita Z, Ohashi K, Fujita T, Kaneko K, Langdon TG (2005) Adv Mater 17:1599. doi: https://doi.org/10.1002/adma.200500069 CrossRefGoogle Scholar
  5. 5.
    Liu M, Roven HJ, Yu Y, Werenskiold JC (2008) Mater Sci Eng A 483–484:59. doi: https://doi.org/10.1016/j.msea.2006.09.144 CrossRefGoogle Scholar
  6. 6.
    Roven HJ, Liu M, Werenskiold JC (2008) Mater Sci Eng A 483–484:54. doi: https://doi.org/10.1016/j.msea.2006.09.142 CrossRefGoogle Scholar
  7. 7.
    Ferrasse S, Segal VM, Alford F, Kardokus J, Strothers S (in press) Mater Sci Eng AGoogle Scholar
  8. 8.
    Friedrich C (2004) Reliable lightweight fastening of magnesium components in automotive applications. In: SAE World Congress & Exhibition, SAE Technical Papers, Detroit, MI, March 2004Google Scholar
  9. 9.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103. doi: https://doi.org/10.1016/S0079-6425(99)00007-9 CrossRefGoogle Scholar
  10. 10.
    Vinogradov A, Mimaki T, Hashimoto S, Valiev R (1999) Scr Mater 41:319. doi: https://doi.org/10.1016/S1359-6462(99)00170-0 CrossRefGoogle Scholar
  11. 11.
    Balyanov A, Kutnyakova J, Amirkhanova NA, Stolyarov VV, Valiev RZ, Liao XZ et al (2004) Scr Mater 51:225. doi: https://doi.org/10.1016/j.scriptamat.2004.04.011 CrossRefGoogle Scholar
  12. 12.
    Akiyama E, Zhang Z, Watanabe Y, Tsuzaki K (2007) J Solid State Electrochem 1–6Google Scholar
  13. 13.
    Hadzima B, Janecek M, Hellmig RJ, Kutnyakova Y, Estrin Y (2006) Mater Sci Forum 503–504:883CrossRefGoogle Scholar
  14. 14.
    Vinogradov A, Miyamoto H, Mimaki T, Hashimoto S (2002) Ann Chim 27:65. doi: https://doi.org/10.1016/S0151-9107(02)80008-3 CrossRefGoogle Scholar
  15. 15.
    Chung M-K, Choi Y-S, Kim J-G, Kim Y-M, Lee J-C (2004) Mater Sci Eng A 366:282. doi: https://doi.org/10.1016/j.msea.2003.08.056 CrossRefGoogle Scholar
  16. 16.
    Son IJ, Nakano H, Oue S, Kobayashi S, Fukushima H, Horita Z (2006) Mater Trans 47:1163. doi: https://doi.org/10.2320/matertrans.47.1163 CrossRefGoogle Scholar
  17. 17.
    Wei W, Wei KX, Du QB (2007) Mater Sci Eng A 454–455:536. doi: https://doi.org/10.1016/j.msea.2006.11.063 CrossRefGoogle Scholar
  18. 18.
    Segal VM (2004) Mater Sci Eng A 386:269CrossRefGoogle Scholar
  19. 19.
    Furukawa M, Horita Z, Langdon TG (2002) Mater Sci Eng A 332:97. doi: https://doi.org/10.1016/S0921-5093(01)01716-6 CrossRefGoogle Scholar
  20. 20.
    Barber RE, Dudo T, Yasskin PB, Hartwig KT (2004) Scr Mater 51:373. doi: https://doi.org/10.1016/j.scriptamat.2004.05.022 CrossRefGoogle Scholar
  21. 21.
    Cheng S, Zhao YH, Zhu YT, Ma E (2007) Acta Mater 55:5822. doi: https://doi.org/10.1016/j.actamat.2007.06.043 CrossRefGoogle Scholar
  22. 22.
    Wang YM, Ma E, Valiev RZ, Zhu YT (2004) Adv Mater 16:328. doi: https://doi.org/10.1002/adma.200305679 CrossRefGoogle Scholar
  23. 23.
    Zhao YH, Liao XZ, Cheng S, Ma E, Zhu YT (2006) Adv Mater 18:2280. doi: https://doi.org/10.1002/adma.200600310 CrossRefGoogle Scholar
  24. 24.
    Zhao YH, Liao XZ, Jin Z, Valiev RZ, Zhu YT (2004) Acta Mater 52:4589. doi: https://doi.org/10.1016/j.actamat.2004.06.017 CrossRefGoogle Scholar
  25. 25.
    Kim WJ, Kim JK, Kim HK, Park JW, Jeong YH (2008) J Alloy Compd 450:222CrossRefGoogle Scholar
  26. 26.
    Kim JK, Jeong HG, Hong SI, Kim YS, Kim WJ (2001) Scr Mater 45:901. doi: https://doi.org/10.1016/S1359-6462(01)01109-5 CrossRefGoogle Scholar
  27. 27.
    Kim JK, Kim HK, Park JW, Kim WJ (2005) Scr Mater 53:1207. doi: https://doi.org/10.1016/j.scriptamat.2005.06.014 CrossRefGoogle Scholar
  28. 28.
    Kim WJ, Chung CS, Ma DS, Hong SI, Kim HK (2003) Scr Mater 49:333. doi: https://doi.org/10.1016/S1359-6462(03)00260-4 CrossRefGoogle Scholar
  29. 29.
    Hockauf M, Meyer LW, Zillmann B, Hietschold M, Schulze S, Krüger L. Mater Sci Eng A (accepted for publication)Google Scholar
  30. 30.
    Hockauf M, Meyer LW, Halle T, Kuprin C, Hietschold M, Schulze S et al (2006) Int J Mater Res 97:1392CrossRefGoogle Scholar
  31. 31.
    Matsuda K, Naoi T, Fujii K, Uetani Y, Sato T, Kamio A et al (1999) Mater Sci Eng A 262:232. doi: https://doi.org/10.1016/S0921-5093(98)00962-9 CrossRefGoogle Scholar
  32. 32.
    Chakrabarti DJ, Laughlin DE (2004) Prog Mater Sci 49:389. doi: https://doi.org/10.1016/S0079-6425(03)00031-8 CrossRefGoogle Scholar
  33. 33.
    Kim WJ, Wang JY (2007) Mater Sci Eng A 464:23. doi: https://doi.org/10.1016/j.msea.2007.03.074 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Matthias Hockauf
    • 1
    Email author
  • Lothar W. Meyer
    • 1
  • Daniela Nickel
    • 2
  • Gert Alisch
    • 2
  • Thomas Lampke
    • 2
  • Bernhard Wielage
    • 2
  • Lutz Krüger
    • 3
  1. 1.Institute for Materials and Impact EngineeringChemnitz University of TechnologyChemnitzGermany
  2. 2.Institute for Composite Materials and Surface TechnologyChemnitz University of TechnologyChemnitzGermany
  3. 3.TU Bergakademie Freiberg, Institute for Materials EngineeringFreibergGermany

Personalised recommendations