Journal of Materials Science

, Volume 43, Issue 19, pp 6414–6421 | Cite as

Spark plasma sintering of ultra refractory compounds

  • Diletta ScitiEmail author
  • Mats Nygren
Proceedings of the Symposium on Spark Plasma Synthesis and Sintering


Spark plasma sintering experiments were conducted on Zr- and Hf-based borides and carbides with the addition of 1, 3, and 9 vol% MoSi2 as sintering aid. For comparison, as-received ZrC, HfC, ZrB2, HfB2 powders were also sintered. The microstructural features were investigated by means of scanning electron microscop–energy dispersive spectroscopy technique. Silicon carbide was detected in all the doped compositions along with significant amounts of oxide species (Hf/ZrO2, and SiO2). The effect of the MoSi2 content on densification, microstructure, and mechanical properties is analyzed.


Spark Plasma Sinter Residual Porosity Monolithic Material Spark Plasma Sinter Process Temperature Mismatch 



The authors wish to thank L. Silvestroni for materials preparation and G. Celotti for X-ray diffraction analysis.


  1. 1.
    Shen Z, Zhao Z, Peng H, Nygren M (2002) Nature 417:266. doi: CrossRefGoogle Scholar
  2. 2.
    Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) J Mater Sci 41:763. doi: CrossRefGoogle Scholar
  3. 3.
    Nygren M, Shen Z (2004) Silic Indus 69:211Google Scholar
  4. 4.
    Groza JR, Zavaliangos A (2000) Mater Sci Eng A287:171. doi: CrossRefGoogle Scholar
  5. 5.
    Groza JR, Garcia M, Schneider JA (2001) J Mater Res 16:286. doi: CrossRefGoogle Scholar
  6. 6.
    Wang H, Wang CA, Yao X, Fang D (2007) J Am Ceram Soc 90:1992. doi: CrossRefGoogle Scholar
  7. 7.
    Anselmi-Tamburini U, Kodera Y, Gasch M, Unuvar C, Munir ZA, Ohyanagi M, Johnson SM (2006) J Mater Sci 41:3097. doi: CrossRefGoogle Scholar
  8. 8.
    Fahrenholtz WG, Hilmas GE (2007) J Am Ceram Soc 90:1347. doi: CrossRefGoogle Scholar
  9. 9.
    Upadhya K, Yang JM, Hoffmann WP (1997) Am Ceram Soc Bull 58:51Google Scholar
  10. 10.
    Opeka MM, Talmy IG, Wuchina EJ, Zaykoski JA, Causey SJ (1999) J Eur Ceram Soc 19:2405. doi: CrossRefGoogle Scholar
  11. 11.
    Wuchina E, Opeka M, Causey S, Buesking K, Spain J, Cull A, Routbort J, Guitierrez-Mora F (2004) J Mater Sci 39:5939. doi: CrossRefGoogle Scholar
  12. 12.
    Ryu HJ, Lee YW, Cha SI, Hong SH (2006) J Nucl Mater 352:341. doi: CrossRefGoogle Scholar
  13. 13.
    Min-Haga E, Scott WD (1988) J Mater Sci 23:2865. doi: CrossRefGoogle Scholar
  14. 14.
    Kim KH, Shim KB (2003) Mater Charact 50:31. doi: CrossRefGoogle Scholar
  15. 15.
    Sciti D, Silvestroni L, Bellosi A (2006) J Mater Res 21:1460. doi: CrossRefGoogle Scholar
  16. 16.
    Sciti D, Silvestroni L, Bellosi A (2006) J Am Ceram Soc 89:2668. doi: CrossRefGoogle Scholar
  17. 17.
    Silvestroni L, Sciti D (2007) Scripta Mater 57:165. doi: CrossRefGoogle Scholar
  18. 18.
    Anstis GR, Chantikul P, Lawn BR, Marshall DB (1988) J Am Ceram Soc 64:533. doi: CrossRefGoogle Scholar
  19. 19.
    Yan Y, Huang Z, Dong S, Jiang D (2006) J Am Ceram Soc 89:3589. doi: CrossRefGoogle Scholar
  20. 20.
    German RM (1996) Sintering theory and practice. Wiley, New YorkGoogle Scholar
  21. 21.
    Landwehr SE, Hilmas GE, Fahrenholtz WG, Talmy IG (2007) J Am Ceram Soc 90:1998. doi: CrossRefGoogle Scholar
  22. 22.
    McColm IJ (1990) Ceramic hardness. Plenum Press, New YorkCrossRefGoogle Scholar
  23. 23.
    Taya M, Hayashi S, Kobayashi AS, Yoon HS (1990) J Am Ceram Soc 73:1382. doi: CrossRefGoogle Scholar
  24. 24.
    Shackelford JF, Alexander W (2001) CRC materials science and engineering handbook, 3rd edn. CRC Press, Boca RatonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.ISTEC-CNR, Institute for Science and Technology of CeramicsFaenzaItaly
  2. 2.Arrhenius Laboratory, Department of Inorganic ChemistryStockolm UniversityStockolmSweden

Personalised recommendations