Advertisement

Journal of Materials Science

, Volume 43, Issue 14, pp 4901–4909 | Cite as

Study of the aging process of corona discharge plasma effects on low density polyethylene film surface

  • M. Pascual
  • R. BalartEmail author
  • L. Sánchez
  • O. Fenollar
  • O. Calvo
Article

Abstract

A study of the durability of corona discharge plasma effects on a polymer surface was investigated in this work. We used the corona discharge plasma technique to modify the wettability properties of low density polyethylene (LDPE) film and evaluated the influence of relative humidity and temperature on the aging process with three different storage conditions. The effects of the aging process on the plasma-treated surface of LDPE film were quantified by contact angle measurements, Fourier-transformed infrared spectroscopy, and X-ray photoelectron spectroscopy. The results obtained with these techniques have allowed us to determine how the aging process promotes changes in the plasma-treated surface by decreasing its wettability and taking place a remarkable hydrophobic recovery process.

Keywords

Contact Angle Aging Time Plasma Treatment Surface Free Energy LDPE 

Notes

Acknowledgements

The authors thank ‘‘Ministerio de Ciencia y Tecnología’’, Ref: DPI2007-66849-C02-02 and IMPIVA for financial support.

References

  1. 1.
    Sanchis MR, Blanes V, Blanes M, Garcia D, Balart R (2006) Eur Polym J 42:1558. doi: https://doi.org/10.1016/j.eurpolymj.2006.02.001 CrossRefGoogle Scholar
  2. 2.
    Sanchis MR, Calvo O, Fenollar O, Garcia D, Balart R (2007) J Appl Polym Sci 105:1077. doi: https://doi.org/10.1002/app.26250 CrossRefGoogle Scholar
  3. 3.
    Fang Z, Qiu YC, Wang H (2004) Plasma Sci Technol 6:2576. doi: https://doi.org/10.1088/1009-0630/6/6/012 CrossRefGoogle Scholar
  4. 4.
    Kwon OJ, Myung SW, Lee CS, Choi HS (2006) J Colloid Interface Sci 295:409. doi: https://doi.org/10.1016/j.jcis.2005.11.007 CrossRefGoogle Scholar
  5. 5.
    Sanchis RM, Calvo O, Sanchez L, Garcia D, Balart R (2007) J Polym Sci B Polym Phys 45:2390. doi: https://doi.org/10.1002/polb.21246 CrossRefGoogle Scholar
  6. 6.
    Shenton MJ, Lovell-Hoare MC, Stevens GC (2001) J Phys D Appl Phys 34:2754. doi: https://doi.org/10.1088/0022-3727/34/18/307 CrossRefGoogle Scholar
  7. 7.
    Shenton MJ, Stevens GC (2001) J Phys D Appl Phys 34:2761. doi: https://doi.org/10.1088/0022-3727/34/18/308 CrossRefGoogle Scholar
  8. 8.
    Shenton MJ, Stevens GC, Wright NP, Duan X (2002) J Polym Sci Pol Chem 40:95. doi: https://doi.org/10.1002/pola.10056 CrossRefGoogle Scholar
  9. 9.
    Guimond S, Wertheimer MR (2004) J Appl Polym Sci 94:1291. doi: https://doi.org/10.1002/app.21134 CrossRefGoogle Scholar
  10. 10.
    Kang JY, Sarmadi M (2004) AATCC Rev 4:28Google Scholar
  11. 11.
    Lee SJ, Khang G, Lee YM, Lee HB (2003) J Colloid Interface Sci 259:228. doi: https://doi.org/10.1016/S0021-9797(02)00163-7 CrossRefGoogle Scholar
  12. 12.
    Lei JX, Liao X, Gao J (2001) J Adhes Sci Technol 15:993. doi: https://doi.org/10.1163/15685610152542405 CrossRefGoogle Scholar
  13. 13.
    Lei JX, Liao X, Gao J (2001) Acta Chimi Sin 59:685Google Scholar
  14. 14.
    Everaert EP, Vandermei HC, Devries J, Busscher HJ (1995) J Adhes Sci Technol 9:1263. doi: https://doi.org/10.1163/156856195X01030 CrossRefGoogle Scholar
  15. 15.
    Fritz JL, Owen MJ (1995) J Adhes 54:33. doi: https://doi.org/10.1080/00218469508014379 CrossRefGoogle Scholar
  16. 16.
    Occhiello E, Morra M, Cinquina P, Garbassi F (1992) Polymer (Guildf) 33:3007. doi: https://doi.org/10.1016/0032-3861(92)90088-E CrossRefGoogle Scholar
  17. 17.
    Occhiello E, Morra M, Garbassi F, Johnson D, Humphrey P (1991) Appl Surf Sci 47:235. doi: https://doi.org/10.1016/0169-4332(91)90037-K CrossRefGoogle Scholar
  18. 18.
    Novak I, Florian S (2004) Macromol Mater Eng 289:269. doi: https://doi.org/10.1002/mame.200300166 CrossRefGoogle Scholar
  19. 19.
    Novak I, Pollak V, Chodak I (2006) Plasma Process Polym 3:355. doi: https://doi.org/10.1002/ppap.200500163 CrossRefGoogle Scholar
  20. 20.
    Dorai R, Kushner MJ (2003) J Phys D Appl Phys 36:666. doi: https://doi.org/10.1088/0022-3727/36/6/309 CrossRefGoogle Scholar
  21. 21.
    Zhu Y, Otsubo M, Honda C (2006) Polym Test 25:313. doi: https://doi.org/10.1016/j.polymertesting.2006.01.003 CrossRefGoogle Scholar
  22. 22.
    Fowkes FM (1968) Ind Eng Chem 60:8Google Scholar
  23. 23.
    Fowkes FM, McCarthy DC, Mostafa MA (1980) J Colloid Interface Sci 78:200. doi: https://doi.org/10.1016/0021-9797(80)90508-1 CrossRefGoogle Scholar
  24. 24.
    Owens DK, Wendt RC (1969) J Appl Polym Sci 13:1741. doi: https://doi.org/10.1002/app.1969.070130815 CrossRefGoogle Scholar
  25. 25.
    Lawton RA, Price CR, Runge AF, Doherty WJ, Saavedra SS (2005) Colloids Surf A Physicochem Eng Asp 253:213. doi: https://doi.org/10.1016/j.colsurfa.2004.11.010 CrossRefGoogle Scholar
  26. 26.
    Walther F, Davydovskaya P, Zucher S, Kaiser M, Herberg H, Gigler AM et al (2007) J Micromech Microeng 17:524. doi: https://doi.org/10.1088/0960-1317/17/3/015 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M. Pascual
    • 1
  • R. Balart
    • 2
    Email author
  • L. Sánchez
    • 2
  • O. Fenollar
    • 2
  • O. Calvo
    • 1
  1. 1.Textile Research Institute (AITEX)AlcoySpain
  2. 2.Materials Technology Institute (ITM)Polytechnic University of Valencia (UPV)AlcoySpain

Personalised recommendations