Advertisement

Journal of Materials Science

, Volume 43, Issue 14, pp 4876–4885 | Cite as

Improved analytical model for isochronal transformation kinetics

  • Dongjiang Wang
  • Yongchang LiuEmail author
  • Yanhua Zhang
Article

Abstract

Analytical model for isochronal phase transformation kinetics attracts much attention for its advantages and importance. However, the simple but exact analytical formula of the isochronal transformation is unavailable because of the so-called temperature integral, and the asymptotic expansions have to be adopted to obtain approximate results. Here a generally used asymptotic expansion was proved divergent, and a reasonable approximation was proposed to obtain a more precise description as compared numerically to the previous one. Based on the proposed approximation, an analytical model for isochronal transformation kinetics was developed, which was proved more effective than the previous analytical model when the transformation occurs in a narrow temperature range and exhibited an identical form to the previous model when in a wide temperature interval.

Keywords

Asymptotic Expansion Transformation Rate Isoconversion Method Transformation Kinetic Isothermal Transformation 

Notes

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (No. 50401003), the Natural Science Foundation of Tianjin City (No. 07JCZDJC01200), Fok Ying Tong Education Foundation and Program for New Century Excellent Talents in University for grant and financial support.

References

  1. 1.
    Michaelsen C, Dahms M (1996) Thermochim Acta 288:9. doi: https://doi.org/10.1016/S0040-6031(96)03039-0 CrossRefGoogle Scholar
  2. 2.
    Kempen ATW, Sommer F, Mittemeijer EJ (2002) Acta Mater 50:1319. doi: https://doi.org/10.1016/S1359-6454(01)00428-1 CrossRefGoogle Scholar
  3. 3.
    Liu F, Sommer F, Mittemeijer EJ (2004) Acta Mater 52:3207. doi: https://doi.org/10.1016/j.actamat.2004.03.020 CrossRefGoogle Scholar
  4. 4.
    Avrami M (1939) J Chem Phys 7:1103. doi: https://doi.org/10.1063/1.1750380 CrossRefGoogle Scholar
  5. 5.
    Avrami M (1940) J Chem Phys 8:212. doi: https://doi.org/10.1063/1.1750631 CrossRefGoogle Scholar
  6. 6.
    Avrami M (1941) J Chem Phys 9:177. doi: https://doi.org/10.1063/1.1750872 CrossRefGoogle Scholar
  7. 7.
    Johnson WA, Mehl RF (1939) Trans AIME 135:416Google Scholar
  8. 8.
    Kolmogorov AN (1937) Izv Akad Nauk SSSR, Ser Matem 3:355Google Scholar
  9. 9.
    Mittemeijer EJ (1992) J Mater Sci 27:3977. doi: https://doi.org/10.1007/BF01105093 CrossRefGoogle Scholar
  10. 10.
    Starink MJ (2003) Thermochim Acta 404:163. doi: https://doi.org/10.1016/S0040-6031(03)00144-8 CrossRefGoogle Scholar
  11. 11.
    Lyon RE (1997) Thermochim Acta 297:117. doi: https://doi.org/10.1016/S0040-6031(97)00158-5 CrossRefGoogle Scholar
  12. 12.
    Vázquez J, Wagner C, Villares P, Jiménez-Garay R (1996) Acta Mater 44:4807. doi: https://doi.org/10.1016/S1359-6454(96)00127-9 CrossRefGoogle Scholar
  13. 13.
    Vázquez J, García-G.Barreda D, López-Alemany PL, Villares P, Jiménez-Garay R (2006) Mater Chem Phys 96:107. doi: https://doi.org/10.1016/j.matchemphys.2005.06.050 CrossRefGoogle Scholar
  14. 14.
    Ruitenberg G, Woldt E, Petford-Long AK (2001) Thermochim Acta 378:97. doi: https://doi.org/10.1016/S0040-6031(01)00584-6 CrossRefGoogle Scholar
  15. 15.
    Kempen ATW, Sommer F, Mittemeijer EJ (2002) J Mater Sci 37:1321. doi: https://doi.org/10.1023/A:1014556109351 CrossRefGoogle Scholar
  16. 16.
    Liu F, Sommer F, Mittemeijer EJ (2004) J Mater Sci 39:1621. doi: https://doi.org/10.1023/B:JMSC.0000016161.79365.69 CrossRefGoogle Scholar
  17. 17.
    Farjas J, Roura P (2006) Acta Mater 54:5573. doi: https://doi.org/10.1016/j.actamat.2006.07.037 CrossRefGoogle Scholar
  18. 18.
    Kempen ATW, Sommer F, Mittemeijer EJ (2002) Acta Mater 50:3545. doi: https://doi.org/10.1016/S1359-6454(02)00149-0 CrossRefGoogle Scholar
  19. 19.
    Liu F, Sommer F, Mittemeijer EJ (2007) J Mater Sci 42:573. doi: https://doi.org/10.1007/s10853-006-0802-4 CrossRefGoogle Scholar
  20. 20.
    Pineda E, Crespo D (1999) Phys Rev B 60:3104. doi: https://doi.org/10.1103/PhysRevB.60.3104 CrossRefGoogle Scholar
  21. 21.
    Kooi BJ (2004) Phys Rev B 70:224108. doi: https://doi.org/10.1103/PhysRevB.70.224108 CrossRefGoogle Scholar
  22. 22.
    Kooi BJ (2006) Phys Rev B 73:054103. doi: https://doi.org/10.1103/PhysRevB.73.054103 CrossRefGoogle Scholar
  23. 23.
    Borrego A, González-Docel G (1998) Mater Sci Eng A 245:10. doi: https://doi.org/10.1016/S0921-5093(97)00706-5 CrossRefGoogle Scholar
  24. 24.
    Varschavsky A, Donoso E (2003) Mater Lett 57:1266. doi: https://doi.org/10.1016/S0167-577X(02)00970-9 CrossRefGoogle Scholar
  25. 25.
    Claudio D, Gonzalez-Hernandez J, Licea O, Laine B, Prokhorov E, Trapaga G (2006) J Non-Cryst Solids 352:51. doi: https://doi.org/10.1016/j.jnoncrysol.2005.11.007 CrossRefGoogle Scholar
  26. 26.
    Vyazovkin S, Dollimore D (1996) J Chem Inf Comput Sci 36:42. doi: https://doi.org/10.1021/ci950062m CrossRefGoogle Scholar
  27. 27.
    Henderson DW (1979) J Non-Cryst Solids 30:301. doi: https://doi.org/10.1016/0022-3093(79)90169-8 CrossRefGoogle Scholar
  28. 28.
    Henderson DW (1979) J Thermal Anal 15:325. doi: https://doi.org/10.1007/BF01903656 CrossRefGoogle Scholar
  29. 29.
    De Bruijn TJW, De Jong WA, Van Den Berg PJ (1981) Thermochim Acta 45:315. doi: https://doi.org/10.1016/0040-6031(81)85091-5 CrossRefGoogle Scholar
  30. 30.
    Málek J (1995) Thermochim Acta 267:61. doi: https://doi.org/10.1016/0040-6031(95)02466-2 CrossRefGoogle Scholar
  31. 31.
    Apostol Tom M (1974) Mathematical analysis, 2nd edn, Chaps. 8 and 9. Addison-Wesley Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.College of Materials Science & Engineering, Tianjin Key Laboratory of Composite and Functional MaterialsTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations