Journal of Materials Science

, Volume 43, Issue 14, pp 4870–4875 | Cite as

Effect of yttrium additions on the properties of grain-refined Mg–3%Nd alloy

  • Eli Aghion
  • Yael Gueta
  • Nir Moscovitch
  • Boris Bronfin


A systematic study was carried out to evaluate the effect of up to 2.5% yttrium additions on the properties of Mg–3%Nd alloy designated for high-temperature gravity casting applications. All the tested alloys were grain-refined by zirconium. The results show that additions of yttrium significantly improved the tensile yield strength, fatigue strength, and creep resistance while reducing the ductility. However, other properties such as the ultimate tensile strength and corrosion resistance in 5% NaCl solution were nearly not affected. The strengthening effect obtained by the yttrium additions is explained in terms of solid-solution strengthening and due to formation of a ternary phase of Mg–Nd–Y. The improved creep resistance was due to the large solubility of yttrium in solid-solution magnesium matrix and to the effective creep deformation barriers created by the ternary phase. The casting performance of the tested alloys in terms of fluidity was similar and no significant effect of the yttrium was evident


Magnesium Alloy Ultimate Tensile Strength Fatigue Strength Creep Resistance Ternary Phase 


  1. 1.
    Blawert C, Hort N, Kainer KU (2004) Trans Indian Inst Met 57:397Google Scholar
  2. 2.
    Cole GS (2007) In: Beals RS, Luo AA, Neelameggham NR, Pekguleryuz MO (eds) Magnesium technology 2007. TMS, Orlando, FLGoogle Scholar
  3. 3.
    Beals RS, Liu Z-K, Jones JW et al (2007) JOM 59:43. doi: CrossRefGoogle Scholar
  4. 4.
    Beals RS, Tissington C, Zhang X et al (2007) JOM 59:39. doi: CrossRefGoogle Scholar
  5. 5.
    Lambri OA, Riehemann W, Salvatierra LM et al (2004) Mater Sci Eng A 373:146. doi: CrossRefGoogle Scholar
  6. 6.
    Bronfin B, Moscovitch N (2006) Met Sci Heat Treat 48:479. doi: CrossRefGoogle Scholar
  7. 7.
    Apps PJ, Karmizadeh H, King JF et al (2003) Scripta Mater 48:475. doi: CrossRefGoogle Scholar
  8. 8.
    Mordike BL (2001) J Mater Proces Technol 117:391. doi: CrossRefGoogle Scholar
  9. 9.
    Apps PJ, Karmizadeh H, King JF et al (2003) Scripta Mater 48:1023. doi: CrossRefGoogle Scholar
  10. 10.
    Meng FG, Liu HS, Liu LB et al (2007) Trans Nonferrous Met Soc China 17:77. doi: CrossRefGoogle Scholar
  11. 11.
    Meng FG, Wang J, Liu HS et al (2007) Mater Sci Eng A 454–455:266. doi: CrossRefGoogle Scholar
  12. 12.
    Nie JF, Muddle BC (2000) Acta Mater 48:1691. doi: CrossRefGoogle Scholar
  13. 13.
    Polmear IJ (1992) In: Mordike BH, Hehman F (eds) Magnesium alloys and their applications. Garmish-PartenkirchenGoogle Scholar
  14. 14.
    Nie JF (2002) In: Kaplan HI (ed) Magnesium technology 2002. TMS, Seattle, WAGoogle Scholar
  15. 15.
    Ghali E, Dietzel W, Kainer KU (2004) J Mater Eng Perform 13:7. doi: CrossRefGoogle Scholar
  16. 16.
    Zucchi F, Grassi V, Frignani A et al (2006) J Appl Electrochem 36:195. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Eli Aghion
    • 1
  • Yael Gueta
    • 1
  • Nir Moscovitch
    • 2
  • Boris Bronfin
    • 2
  1. 1.Department of Materials EngineeringBen Gurion UniversityBeer ShevaIsrael
  2. 2.Dead Sea Magnesium LtdBeer ShevaIsrael

Personalised recommendations