Advertisement

Journal of Materials Science

, Volume 43, Issue 17, pp 5977–5981 | Cite as

Oxygen diffusion in Ti–10Mo alloys measured by mechanical spectroscopy

  • Renata Abdallah Nogueira
  • Carlos Roberto GrandiniEmail author
  • Ana Paula Rosifini Alves Claro
Article

Abstract

The addition of interstitial elements in metals, as titanium and its alloys, causes alterations in their mechanical properties, making them either softer or harder, for example. The internal friction measurements have been frequently used in order to verify the behavior of these interstitials atoms in metallic alloys. This paper presents the oxygen diffusion in Ti–10Mo alloy by the analysis of the mechanical relaxation spectra, in the temperature range of 350–600 K. The relaxation structure obtained was analyzed by means of the frequency dependence of the peak temperature and by using a simple mathematical treatment of the relaxation structure and the Arrhenius law.

Keywords

Internal Friction Oxygen Diffusion Relaxation Structure Interstitial Atom Interstitial Element 

Notes

Acknowledgements

The authors would like to thank the Brazilian agencies, FAPESP and CNPq, for their financial support.

References

  1. 1.
    Jafee RI, Promisel NE (1970) The science, technology and application of titanium. Pergamon Press, LondonGoogle Scholar
  2. 2.
    Donachie MJ (1988) Titanium—a technical guide. ASM, OhioGoogle Scholar
  3. 3.
    Polmear IJ (1995) Light alloys, metallurgy of the light metals, 3rd edn. Edward Arnold, Great BritainGoogle Scholar
  4. 4.
    Souza AC, Grandini CR, Florêncio O (2008) J Mater Sci 43:1593. doi: https://doi.org/10.1007/s10853-007-2324-0 CrossRefGoogle Scholar
  5. 5.
    Khan MA, Willians RL, Willians DF (1996) Biomaterials 17:2117. doi: https://doi.org/10.1016/0142-9612(96)00029-4 CrossRefGoogle Scholar
  6. 6.
    Long M, Rack HJ (1998) Biomaterials 19:1621. doi: https://doi.org/10.1016/S0142-9612(97)00146-4 CrossRefGoogle Scholar
  7. 7.
    Guo H, Enamoto M (2002) Acta Mater 50:929. doi: https://doi.org/10.1016/S1359-6454(01)00392-5 CrossRefGoogle Scholar
  8. 8.
    Ho WF, Ju CP, Lin JHC (1999) Biomaterials 20:2115. doi: https://doi.org/10.1016/S0142-9612(99)00114-3 CrossRefGoogle Scholar
  9. 9.
    Alves APR, Santana FA, Rosa LAA et al (2004) Mater Sci Eng C 24:693. doi: https://doi.org/10.1016/j.msec.2004.08.013 CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Nowick AS, Berry BS (1972) Anelastic relaxation in crystalline solids. Academic Press, New YorkGoogle Scholar
  12. 12.
    Grandini CR (2002) Rev Bras Apl Vácuo 21:138Google Scholar
  13. 13.
    Florêncio O, Silva PS Jr, Grandini CR (2006) Diffus Defect Data A 258–260:137CrossRefGoogle Scholar
  14. 14.
    Grandini CR, Silva LM, Almeida LH et al (2008) Diffus Defect Data A 273–276:256CrossRefGoogle Scholar
  15. 15.
    Souza AC, Grandini CR, Florêncio O (2008) Diffus Defect Data A 273–276:261CrossRefGoogle Scholar
  16. 16.
    Weller M (1981) Acta Metall 29:1047. doi: https://doi.org/10.1016/0001-6160(81)90056-0 CrossRefGoogle Scholar
  17. 17.
    Tikhomitrov V, Dyachkov U (1967) Zh Prikl Khim 4:245Google Scholar
  18. 18.
    Sokirianskii L, Ignatov D (1969) Fiz Met Metalloved 28:287Google Scholar
  19. 19.
    Rosa CJ (1970) Metall Trans 1:2617Google Scholar
  20. 20.
    Kofstad P, Andersson PB, Krudtaa OJ (1961) J Less Common Met 3:89. doi: https://doi.org/10.1016/0022-5088(61)90001-7 CrossRefGoogle Scholar
  21. 21.
    Revyakin AV (1961) Izv Akad Nauk SSSR 5:113Google Scholar
  22. 22.
    Roe WP, Palmer HR, Opie WR (1960) Trans ASM 52:191Google Scholar
  23. 23.
    Hauffe K (1965) Oxidation of metals. Plenum Press, New YorkGoogle Scholar
  24. 24.
    Jenkis AE (1954) J Inst Met 82:213Google Scholar
  25. 25.
    Com-Nouguè J (1972) Thèse, Paris-Sud, ParisGoogle Scholar
  26. 26.
    Feldman R, Déchamps M, Lehr P (1977) Métaux Corrosion Industrie 617:140Google Scholar
  27. 27.
    David D, Garcia EA, Lucas X, Beranger G (1979) J Less Common Met 65:51. doi: https://doi.org/10.1016/0022-5088(79)90152-8 CrossRefGoogle Scholar
  28. 28.
    David D, Beranger G, Garcia EA (1983) J Eletroch Soc 130:1423. doi: https://doi.org/10.1149/1.2119966 CrossRefGoogle Scholar
  29. 29.
    Güçlü FM, Çimenoglu H, Kayali ES (2006) Mater Sci Eng C 26:1367CrossRefGoogle Scholar
  30. 30.
    Niemeyer TC, Grandini CR, Florêncio O (2005) Mater Sci Eng A 396:285CrossRefGoogle Scholar
  31. 31.
    Cantelli R, Szkopiak ZC (1976) Appl Phys 9:153. doi: https://doi.org/10.1007/BF00903952 CrossRefGoogle Scholar
  32. 32.
    Almeida LH, Niemeyer TC, Pires KCC et al (2004) Mater Sci Eng A 370:96CrossRefGoogle Scholar
  33. 33.
    Lutz T, Gerlach JW, Mändl S (2007) Surf Coat Technol 201:6690. doi: https://doi.org/10.1016/j.surfcoat.2006.09.102 CrossRefGoogle Scholar
  34. 34.
    Peterson NL (1961) Diffusion in refractory metals. Wadd Technical ReportGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Renata Abdallah Nogueira
    • 1
  • Carlos Roberto Grandini
    • 1
    Email author
  • Ana Paula Rosifini Alves Claro
    • 2
  1. 1.UNESP, Grupo de Relaxações AnelásticasBauruBrazil
  2. 2.UNESP, Departamento de Materiais e TecnologiaGuaratinguetáBrazil

Personalised recommendations