Advertisement

Journal of Materials Science

, Volume 43, Issue 14, pp 4856–4861 | Cite as

AC conductivity in rare earth ions doped vanadophosphate glasses

  • G. B. Devidas
  • T. SankarappaEmail author
  • M. Prashant Kumar
  • Santosh Kumar
Article

Abstract

Room temperature density and AC conductivity in the temperature range 300–525 K and frequency range 50 Hz to 5 MHz have been investigated in a set of La2O doped vanadophosphate glasses. The density decreased and total conductivity increased with increase of La2O content. The high temperature electrical conductivity has been analyzed using Mott’s small polaron model and polaron activation energies were determined. The polaron activation energy decreased marginally with increase of lanthanum content, at all frequencies of interest. These results have been attributed to the presence of mixed ion–polaron conduction in the present glasses. It is for the first time that La2O doped vanadophosphate glasses have been investigated for AC conductivity and despite heaviness of lanthanum ions, the mixed ion–polaron conduction has been detected. Frequency dependence of AC conductivity has been considered under the correlated barrier hopping (CBH) model of single electron hopping.

Keywords

Tellurite Glass Present Glass Frequency Exponent Frequency Dependent Conductivity La2O Content 

Notes

Acknowledgement

One of the authors, T. Sankarappa, acknowledges the rigorous research training that he received from Professor M. Springford and Dr. P. J. Meeson at H.H. Wills Physics Laboratory, University of Bristol, UK.

References

  1. 1.
    Murugan GS, Suzuki T, Ohishi Y (2005) Appl Phys Lett 86(16):1109Google Scholar
  2. 2.
    Xun D, Yang J, Xu S, Dai N, Wen L, Hu L, Jiang Z (2003) Chin Phys Lett 20(1):130Google Scholar
  3. 3.
    Churbanov MF, Snopatin GE, Zorin EV, Smetanin SV, Dianova EM, Plotnichenko VG, Koltasheva VV, Kryukovaa EB, Grishinb IA, Butsinb GG (2005) J Optoelectron Adv Mater 07(4):1765Google Scholar
  4. 4.
    Petris A, Popa C, Popaa D, Vlad VI (2004) J Optoelectron Adv Mater 06(01):57Google Scholar
  5. 5.
    Pisarska J, Pisarskia WA (2005) J Optoelectron Adv Mater 07(05):2667Google Scholar
  6. 6.
    Sidebottom DL, Hruschka MA, Potter BG, Brow RK, (1997) Appl Phys Lett 71(14):06Google Scholar
  7. 7.
    Xiang P, Feng S, Shibin J, Peyghambarian N, Gonokami MK, Lei Xu (2003) Appl Phys Lett 82:10. doi: https://doi.org/10.1063/1.1533845 Google Scholar
  8. 8.
    Latia A, Vancea C (2003) J Optoelectron Adv Mater 05(01):185Google Scholar
  9. 9.
    Bahgat AA, Abou-Zeid YM (2001) Phys Chem Glasses 42:01Google Scholar
  10. 10.
    Karlsson C, Mandanici A, Matic A, Swenson J, Borjesson L (2003) Phys Rev B 68:064202. doi: https://doi.org/10.1103/PhysRevB.68.064202 Google Scholar
  11. 11.
    Jozwiak P, Garbarczyk JE, Wasiucionek M (2006) Mater Sci Pol 24:01Google Scholar
  12. 12.
    El-Mallawany R, El-Sayed A, El-Gawad M (1995) Mater Chem Phys 41:87. doi: https://doi.org/10.1016/0254-0584(95)01517-5 Google Scholar
  13. 13.
    Elkholy MM (2001) Phys Chem Glasses 42(1):49Google Scholar
  14. 14.
    Shaaban MH, Ali AA, El-Nimr LK (2006) Mater Chem Phys 96:423. doi: https://doi.org/10.1016/j.matchemphys.2005.07.035 Google Scholar
  15. 15.
    Bih L, Abbas L, Nadiri A, El-amraoui Y, Mezzane D, Khemakhem H, (2006) MJ Condens Mater 07(01):70Google Scholar
  16. 16.
    Mogus Milankovic A, Santic A, Reis ST, Furic K, Day DE (2005) J Non-Cryst Solid 351:3246. doi: https://doi.org/10.1016/j.jnoncrysol.2005.08.006 Google Scholar
  17. 17.
    Hogarth CA, Basha MJ (1983) J Phys D: Appl Phys 16:869. doi: https://doi.org/10.1088/0022-3727/16/5/018 Google Scholar
  18. 18.
    El-Desoky MM (2005) J Non-Cryst Solids 351:3139. doi: https://doi.org/10.1016/j.jnoncrysol.2005.08.004 Google Scholar
  19. 19.
    Sen S, Ghosh A (2000) J Mater Res 15:995. doi: https://doi.org/10.1557/JMR.2000.0142 Google Scholar
  20. 20.
    Mott NF, (1968) J Non-Cryst Solids 1:1. doi: https://doi.org/10.1016/0022-3093(68)90002-1 Google Scholar
  21. 21.
    Austin IG, Mott NF (1969) Adv Phys 18:41. doi: https://doi.org/10.1080/00018736900101267 Google Scholar
  22. 22.
    Ghosh A (1993) Phys Rev B 47:23Google Scholar
  23. 23.
    Mansingh A, Dhawan VK (1983) J Phys C: Solid State Phys 16:675. doi: https://doi.org/10.1088/0022-3719/16/9/012 Google Scholar
  24. 24.
    Owen A (1963) Prog Ceram Soc 77:256Google Scholar
  25. 25.
    Bhattacharya S, Ghosh A (2003) Phys Rev B 68:224202. doi: https://doi.org/10.1103/PhysRevB.68.224202 Google Scholar
  26. 26.
    Balaya P, Goyal PS (2005) J Non-Cryst Solid 351:1573. doi: https://doi.org/10.1016/j.jnoncrysol.2005.03.045 Google Scholar
  27. 27.
    Elliott S (1987) Adv Phys 36:135. doi: https://doi.org/10.1080/00018738700101971 Google Scholar
  28. 28.
    Shaaban MH, Ali AA, El-Nimr MK (2006) Mater Chem Phys 96:433. doi: https://doi.org/10.1016/j.matchemphys.2005.07.035 Google Scholar
  29. 29.
    Ghosh A (1990) Phys Rev B 42(2):1388Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • G. B. Devidas
    • 1
  • T. Sankarappa
    • 1
    Email author
  • M. Prashant Kumar
    • 1
  • Santosh Kumar
    • 1
  1. 1.Department of PhysicsGulbarga UniversityGulbargaIndia

Personalised recommendations