Journal of Materials Science

, Volume 43, Issue 14, pp 4849–4855 | Cite as

Synthesis of SiC ceramic fibers from nuclear reactor irradiated polycarbosilane ceramic precursor fibers

  • Liangping XiongEmail author
  • Yunshu Xu
  • Yang Li
  • Xiulong Xia


Polycarbosilane (PCS) ceramic precursor fibers are irradiated in a nuclear reactor and pyrolyzed under inert atmosphere. Bridge structure of Si–CH2–Si is formed in the irradiated products by the rupture of Si–H bonds and succeeding cross-linking. When irradiated at the neutron fluence of 2.2 × 1017 cm−2 under N2 atmosphere, the gel content and ceramic yield at 1,273 K of PCS fibers are up to 80% and 94.3%, respectively, and their pyrolysis products are still fibrous, which illuminates that the infusibility of PCS fibers has been achieved. FT-IR spectra indicate that the chemical structure of pyrolysis products is very similar to that of pure SiC, while X-ray diffraction curves suggest that β-SiC microcrystals are formed in the fibers, and their mean grain size is about 7.5 nm. The oxygen content (1.69–3.77 wt%) is much lower than that of conventional SiC fibers by oxidation curing method (about 15 wt%). Tensile strength of the SiC fibers is up to 2.72 GPa, which demonstrates that their mechanical properties are excellent. After heat-treated at 1,673 K in air for an hour or at 1,873 K under Ar gas atmosphere for 0.5 h, their external appearance is still undamaged and dense, and their tensile strength decreases to a small extent, which verifies that heat resistance of the SiC fibers is eximious.


Tensile Strength Pyrolysis Pyrolysis Product Bridge Structure Neutron Fluence 


  1. 1.
    Idesaki A, Miwa Y, Katase Y, Narisawa M, Okamura K, Itoh M (2003) J Mater Sci 38:2591. doi: CrossRefGoogle Scholar
  2. 2.
    Kotani M, Kohyama A, Katoh Y (2001) J Nucl Mater 289:37. doi: CrossRefGoogle Scholar
  3. 3.
    Idesaki A, Narisawa M, Okamura K, Sugimoto M, Morita Y, Seguchi T, Itoh M (2001) J Mater Sci 36:357. doi: CrossRefGoogle Scholar
  4. 4.
    Takeda M, Saeki A, Sakamoto J, Imai Y, Ichikawa H (1999) Compos Sci Technol 59:787. doi: CrossRefGoogle Scholar
  5. 5.
    Idesaki A, Narisawa M, Okamura K, Sugimoto M, Morita Y, Seguchi T, Itoh M (2001) Radiat PhysChem 60:483. doi: CrossRefGoogle Scholar
  6. 6.
    Takeda M, Imai Y, Ichikawa H, Kasai N, Seguchi T, Okamura K (1999) Compos Sci Technol 59:793. doi: CrossRefGoogle Scholar
  7. 7.
    Clade J, Seider E, Sporn D (2005) J Eur Ceram Soc 25:123. doi: CrossRefGoogle Scholar
  8. 8.
    Tazihemida A, Pailler R, Naslain R (1997) J Mater Sci 32:2359. doi: CrossRefGoogle Scholar
  9. 9.
    Chollon G, Czerniak M, Pailler R, Bourrat X, Naslain R, Pillot JP, Cannet R (1997) J Mater Sci 32:893. doi: CrossRefGoogle Scholar
  10. 10.
    Seguchi T (2000) Radiat Phys Chem 57:367. doi: CrossRefGoogle Scholar
  11. 11.
    Chu ZY, Song YC, Xu YS, Fu YB (1999) J Mater Sci Lett 18:1793. doi: CrossRefGoogle Scholar
  12. 12.
    Chu ZY, Song YC, Xu YS, Fu YB (2000) J Mater Sci Lett 19:1771. doi: CrossRefGoogle Scholar
  13. 13.
    Fan XL, Feng CX, Song YC, Li XD (1999) J Mater Sci Lett 18:629. doi: CrossRefGoogle Scholar
  14. 14.
    Shimoo T, Katase Y, Okamura K, Takano W (2004) J Mater Sci 39:6243. doi: CrossRefGoogle Scholar
  15. 15.
    Chu ZY, Song YC, Feng CX, Xu YS, Fu YB (2001) J Mater Sci Lett 20:585. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Liangping Xiong
    • 1
    Email author
  • Yunshu Xu
    • 1
  • Yang Li
    • 1
  • Xiulong Xia
    • 1
  1. 1.Institute of Nuclear Physics and ChemistryChina Academy of Engineering PhysicsMianyangChina

Personalised recommendations