Advertisement

Journal of Materials Science

, Volume 43, Issue 14, pp 4834–4839 | Cite as

Effects of aqueous aging on the mechanical properties of P40Na20Ca16Mg24 phosphate glass fibres

  • S. Cozien-CazucEmail author
  • A. J. Parsons
  • G. S. Walker
  • I. A. Jones
  • C. D. Rudd
Article

Abstract

Melt-spun phosphate glass fibres (40 mol% P2O5-20 mol% Na2O-16 mol% CaO-24 mol% MgO) were aged for up to 7 days in doubly distilled water at 37 °C prior to single-fibre tensile testing. The effects of aqueous aging on the evolution of strength and modulus are discussed along with the possibilities for mitigating property loss via surface treatment and annealing. Whilst as-drawn fibres exhibited a strength loss over time, annealing produced a significant increase in strength over the same period. Silane pre-treatment of as-drawn fibres yielded no significant benefit to strength.

Keywords

Tensile Strength Tensile Modulus Fibre Strength Strength Loss Annealed Fibre 

Notes

Acknowledgements

The authors would like to thank the Engineering and Physical Research Science Council (EPRSC) for funding the PhD scholarship without which this work would not have been possible.

References

  1. 1.
    Choueka J, Charvet JL, Alexander H et al (1995) J Biomed Mater Res 29:1309. doi: https://doi.org/10.1002/jbm.820291102 CrossRefGoogle Scholar
  2. 2.
    Slivka MA, Chu CC, Adisaputro IAA (1997) J Biomed Mater Res 36:469. doi: https://doi.org/10.1002/(SICI)1097-4636(19970915)36:4<469::AID-JBM4>3.0.CO;2-C CrossRefGoogle Scholar
  3. 3.
    Cozien-Cazuc S, Parsons AJ, Walker GS et al (2008) J Non-Cryst SolidsGoogle Scholar
  4. 4.
    Cozien-Cazuc S (2006) Characterisation of resorbable phosphate glass fibres. PhD thesis, The University of NottinghamGoogle Scholar
  5. 5.
    Cozien-Cazuc S, Parsons AJ, Walker GS et al (2008) J Non-Cryst SolidsGoogle Scholar
  6. 6.
    Stockhorst H, Brückner R (1986) J Non-Cryst Solids 85:105. doi: https://doi.org/10.1016/0022-3093(86)90083-9 CrossRefGoogle Scholar
  7. 7.
    Murgatroyd JB (1944) J Soc Glass Technol 28:368Google Scholar
  8. 8.
    Murgatroyd JB (1944) J Soc Glass Technol 28:388Google Scholar
  9. 9.
    Hayden JS, Marker AJ III, Suratwala TI et al (2000) J Non-Cryst Solids 263–264:228CrossRefGoogle Scholar
  10. 10.
    Delahaye F, Montagne L, Palavit G et al (1998) J Non-Cryst Solids 242:25. doi: https://doi.org/10.1016/S0022-3093(98)00784-4 CrossRefGoogle Scholar
  11. 11.
    Stoner EG (1991) The effect of shape on the tensile strength of pitch-based carbon fibres. PhD thesis, Clemson UniversityGoogle Scholar
  12. 12.
    Stoner EG, Edie DD, Durham SD (1994) J Mater Sci 29:6561. doi: https://doi.org/10.1007/BF00354022 CrossRefGoogle Scholar
  13. 13.
    Griffith AA (1920) Philos Trans R Soc Lond Ser A 221:163CrossRefGoogle Scholar
  14. 14.
    ASM International (2000) Corrosion, understanding the basics. ASM International, Ohio, USAGoogle Scholar
  15. 15.
    Metcalfe AG, Schmitz GK (1972) Glass Technol 13:5Google Scholar
  16. 16.
    Schmitz GK, Metcalfe AG (1966) Prod Res Dev 5:1. doi: https://doi.org/10.1021/i360017a001 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • S. Cozien-Cazuc
    • 1
    Email author
  • A. J. Parsons
    • 1
  • G. S. Walker
    • 1
  • I. A. Jones
    • 1
  • C. D. Rudd
    • 1
  1. 1.Polymer Composites Research Group, School of Mechanical, Materials and Manufacturing EngineeringThe University of NottinghamNottinghamUK

Personalised recommendations