Advertisement

Journal of Materials Science

, Volume 43, Issue 14, pp 4828–4833 | Cite as

Simultaneous measurement of normal force and electrical resistance during isothermal crystallization for carbon black filled high-density polyethylene

  • Zhihua Liu
  • Yihu Song
  • Yonggang Shangguan
  • Qiang ZhengEmail author
Article

Abstract

The kinetics of isothermal crystallization for high-density polyethylene (HDPE) containing different volume fraction (Φ) of carbon black (CB) have been evaluated by using differential scanning calorimetry (DSC) at 123, 124, and 125 °C where the rate of crystallization is moderate. Simultaneous measurement of normal force (FN) and electrical resistance (R) has been performed to probe the process of isothermal crystallization at strain zero. Results reveal that, at the early stage of crystallization, FN is almost independent of time (t) while relative resistance (R/R0) changes slightly with increasing time t. However, a significant increment in FN and a remarkable change in R/R0 can be observed at the same critical time (tc), and the value of tc is dependent on the crystallization temperature and CB content, which is available for describing the isothermal crystallization as a characteristic parameter. It is found that tc is greater than induction time of crystallization (t0) due to the less sensitivity of mechanical and electrical responses than enthalpy to the structural changes in the composites. It is suggested that mechanical and electrical simultaneous measurement endows us a novel approach to probing the formation of percolation network involving in crystallization of polymer matrix.

Keywords

Differential Scanning Calorimetry Carbon Black HDPE Isothermal Crystallization Carbon Black Particle 

Notes

Acknowledgement

This study was supported by the National Nature Science Foundation of China (No. 20774085).

References

  1. 1.
    Fornes TD, Paul DR (2003) Polymer 44:3945. doi: https://doi.org/10.1016/S0032-3861(03)00344-6 CrossRefGoogle Scholar
  2. 2.
    Papageorgiou GZ, Achilias DS, Bikiaris DN, Karayannidis GP (2005) Thermochimica Acta 427:117. doi: https://doi.org/10.1016/j.tca.2004.09.001 CrossRefGoogle Scholar
  3. 3.
    Qureshi N, Stepanov EV (2000) J Polym Sci: Polym Phys 38:1679. doi:10.1002/1099-0488(20000701)38:13<1679::AID-POLB10>3.0.CO;2-PCrossRefGoogle Scholar
  4. 4.
    Wu TM, Chang CC (2000) J Polym Sci: Polym Phys 38:2515. doi:10.1002/1099-0488(20001001)38:19<2515::AID-POLB30>3.0.CO;2-4CrossRefGoogle Scholar
  5. 5.
    Polyakova A, Stepanov EV (2001) J Polym Sci: Polym Phys J 39:1911. doi: https://doi.org/10.1002/polb.1165 CrossRefGoogle Scholar
  6. 6.
    Mucha M, Marszlek J, Fidrych A (2000) Polymer 41:4137. doi: https://doi.org/10.1016/S0032-3861(99)00706-5 CrossRefGoogle Scholar
  7. 7.
    Wunderlich B (1973) Macromolecular physics. Academic Press, New York, p 217Google Scholar
  8. 8.
    Karger-Kocsis J (1995) Polypropylene structure, blend and composites. Chapman & Hall, London, p 60Google Scholar
  9. 9.
    Hearle JWS (1982) Polymers and their properties: fundamentals of structure and mechanics. Halsted Press, New York, p 293Google Scholar
  10. 10.
    Chen Q, Fan YR, Zheng Q (2005) Chin J Polym Sci 23:423CrossRefGoogle Scholar
  11. 11.
    Carrot C, Guillet J, Boutahar K (1993) Rheol Acta 32:566. doi: https://doi.org/10.1007/BF00369073 CrossRefGoogle Scholar
  12. 12.
    Boutahar K, Carrot C, Guillet J (1998) Macromolecules 31:1921. doi: https://doi.org/10.1021/ma9710592 CrossRefGoogle Scholar
  13. 13.
    Friedrich C, Scheuchenpflug W, Neuhausler S, Rosch J (1995) J Appl Polym Sci 57:499. doi: https://doi.org/10.1002/app.1995.070570412 CrossRefGoogle Scholar
  14. 14.
    Masuda T, Kitamura M, Onogi S (1981) J Rheol 25:453. doi: https://doi.org/10.1122/1.549625 CrossRefGoogle Scholar
  15. 15.
    Payne AR (1965) J Appl Polym Sci 9:1073. doi: https://doi.org/10.1002/app.1965.070090323 CrossRefGoogle Scholar
  16. 16.
    Voet A, Cook FR (1968) Rubber Chem Technol 41:1207CrossRefGoogle Scholar
  17. 17.
    Pan XD, Mckinley GH (1998) Langmuir 14:985. doi: https://doi.org/10.1021/la9711084 CrossRefGoogle Scholar
  18. 18.
    Liu ZH, Song YH, Zhou JF, Zheng Q (2007) J Mater Sci 42:8757. doi: https://doi.org/10.1007/s10853-007-1858-5 CrossRefGoogle Scholar
  19. 19.
    Doljack FA (1981) IEEE Trans Compon Hybrids Manuf Technol 4:372. doi: https://doi.org/10.1109/TCHMT.1981.1135838 CrossRefGoogle Scholar
  20. 20.
    Song YH, Zheng Q (2007) J Appl Polym Sci 105:710. doi: https://doi.org/10.1002/app.26076 CrossRefGoogle Scholar
  21. 21.
    Medalia AI (1986) Rubber Chem Technol 59:432CrossRefGoogle Scholar
  22. 22.
    Nakamura S, Saito K, Sawa G, Kitagawa K (1997) Jpn J Appl Phys 36:5163. doi: https://doi.org/10.1143/JJAP.36.5163 CrossRefGoogle Scholar
  23. 23.
    Mucha M, Krolikowski ZJ (2003) Therm Anal Calorim 74:549. doi: https://doi.org/10.1023/B:JTAN.0000005193.66789.ea CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Zhihua Liu
    • 1
    • 2
  • Yihu Song
    • 1
    • 2
  • Yonggang Shangguan
    • 1
    • 2
  • Qiang Zheng
    • 1
    • 2
    Email author
  1. 1.Department of Polymer Science and EngineeringZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of EducationZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations