Advertisement

Journal of Materials Science

, Volume 43, Issue 13, pp 4573–4582 | Cite as

Structural and textural characterization of a novel spatially coherent crystalline nanocomposite obtained from a melt of KBr, RbCl, RbBr, KI, RbI, and KCl salts

  • A. E. Cordero-BorboaEmail author
  • R. R. Mijangos
  • L. Flores-Morales
Article

Abstract

Large crystal bulks, grown by the Czochralski technique from a melt prepared by mixing equal molar fractions of KBr, RbCl, RbBr, KI, RbI, and KCl salts, are characterized by X-ray diffractometry and atomic force microscopy. The bulk material consists of a highly textured aggregation of crystallites of two different face-centered-cubic-solid solutions with unit-cell sizes of 7.247 ± 0.001 and 6.536 ± 0.005 Å, in molar fractions of 1/3 and 2/3, respectively. These solutions are discussed to be the binary KI(34.4%):RbI(65.6%) and the quaternary KBr(42.7%):RbCl(33.2%):RbBr(8.1%)KCl(16.0%) mixed phases, respectively. Most of the crystallites, no matter the phase they belong to, are spatially coherent to each other. Freshly cleaved {100}-faces show surface domains, surrounded by canyons, and surface steps. These domains are plenty of knolls (1.8 ± 0.1 knolls/μm2) with a corresponding average knoll-profile full-width-at-half-maximum-value of 0.054 ± 0.003 μm, suggesting that the material is formed by a mass of individual nanometric grains. Micrometric particles, showing defined crystallographic habits, are immersed within the growths so that they keep in common with the growth matrix important crystallographic directions. The expected consequences of the observed texture on the physical properties of the material, as well as the structural origin of both the observed surface steps and the whitish visual appearance of the growths, are discussed.

Keywords

RbCl Screw Dislocation Alkali Halide RbBr Surface Step 

Notes

Acknowledgements

The work is partially supported by the Dirección General de Asuntos del Personal Académico de la Universidad Nacional Autónoma de México (project PAPIIT-IN117506-3). The authors wish to thank Prof. Héctor Riveros Rotge and Mr. Ricardo Guerrero for growing the crystals and Mr. R. Unda-Angeles for doing the digital treatment of the images.

References

  1. 1.
    Bragg WH, Bragg WL (1913) Proc R Soc Lond Ser A 88:428. doi: https://doi.org/10.1098/rspa.1913.0040 CrossRefGoogle Scholar
  2. 2.
    Bragg WL (1913) Proc R Soc Lond Ser A 89:248. doi: https://doi.org/10.1098/rspa.1913.0083 CrossRefGoogle Scholar
  3. 3.
    Glocker R (1914) Phys Z 15:401Google Scholar
  4. 4.
    Glocker R (1915) Ann D Phys 47:377. doi: https://doi.org/10.1002/andp.19153521104 CrossRefGoogle Scholar
  5. 5.
    Hull AW (1919) Trans Am Inst Electr Eng 38:1445CrossRefGoogle Scholar
  6. 6.
    Davey WP (1921) Phys Rev 17:402Google Scholar
  7. 7.
    Wyckoff RWG (1921) J Washington Acad 11:429Google Scholar
  8. 8.
    Posnak E, Wyckoff RWG (1922) J Washington Acad 12:248Google Scholar
  9. 9.
    Vegard L, Schjelderup H (1917) Phys Z 18:93Google Scholar
  10. 10.
  11. 11.
    Kitaigorodsky AI (1984) Mixed crystals, chap 9. Springer-Verlag, Berlin, p 181Google Scholar
  12. 12.
    Sirdeshmukh DB, Srinivas K (1986) J Mater Sci 21:4117. doi: https://doi.org/10.1007/BF01106517 CrossRefGoogle Scholar
  13. 13.
    Raynor GV (1958) Progress in metal physics, vol 1. Pergamon Press, London, p 61Google Scholar
  14. 14.
    Friedel J (1955) Philos Mag 46:514CrossRefGoogle Scholar
  15. 15.
    “Powder Diffraction File” (International Centre for Diffraction Data, Pennsylvania, USA, 2001) data cards 36-1471, 6-0289, 8-0480, 4-0471, 6-0218 and 4-0587Google Scholar
  16. 16.
  17. 17.
    Smakula A, Maynard NC, Repucci A (1963) Phys Rev 130(1):113CrossRefGoogle Scholar
  18. 18.
    Priya M, Mahadevan CK, Physica B (2007) doi: https://doi.org/10.1016/j.physb.2007.08.009 CrossRefGoogle Scholar
  19. 19.
    Shahaya Shajan X, Sivaraman K, Mahadevan C, Chandrasekharam D (1992) Cryst Res Technol 27:K79. doi: https://doi.org/10.1002/crat.2170270433 CrossRefGoogle Scholar
  20. 20.
    Neelakanda Pillai N, Mahadevan CK (2007) Mater Manuf Processes 22:393. doi: https://doi.org/10.1080/10426910701190972 CrossRefGoogle Scholar
  21. 21.
    Padma CM, Mahadevan CK (2007) Mater Manuf Processes 22:362. doi: https://doi.org/10.1080/10426910701190808 CrossRefGoogle Scholar
  22. 22.
    Jayakumari K, Mahadevan CK (2005) J Phys Chem Solids 66:1705. doi: https://doi.org/10.1016/j.jpcs.2005.07.008 CrossRefGoogle Scholar
  23. 23.
    Selvarajan G, Mahadevan CK (2006) J Mater Sci 8211. doi: https://doi.org/10.1007/s10853-006-0999-2 CrossRefGoogle Scholar
  24. 24.
    Mijangos RR, Cordero-Borboa A, Camarillo E, Riveros H, Castaño VM (1998) Phys Lett A 245:123. doi: https://doi.org/10.1016/S0375-9601(98)00370-3 CrossRefGoogle Scholar
  25. 25.
    Mijangos RR, Riveros H, Camarillo E, Guerrero R, Atondo M, Alvarez E, Rodriguez-Soria A (2000) Phys Stat Sol B 220:687. doi: https://doi.org/10.1002/1521-3951(200007)220:1<687::AID-PSSB687>3.0.CO;2-U CrossRefGoogle Scholar
  26. 26.
    Mijangos RR, Cordero-Borboa A, Alvarez E, Cervantes M (2001) Phys Lett A 282:195. doi: https://doi.org/10.1016/S0375-9601(01)00184-0 CrossRefGoogle Scholar
  27. 27.
    Perumal S, Mahadevan CK (2005) Physica B 369:89. doi: https://doi.org/10.1016/j.physb.2005.07.034 CrossRefGoogle Scholar
  28. 28.
    Corde-Roborboa AE, Mijangos RR, Schabes-Retchkiman PS (2006) J Mater Sci 41:7119. doi: https://doi.org/10.1007/s10853-006-0932-8 CrossRefGoogle Scholar
  29. 29.
    Czochralski J (1918) Z Phys Chem 92:219Google Scholar
  30. 30.
    Cohen MU (1935) Rev Sci Instr 6:68. doi: https://doi.org/10.1063/1.1751937 CrossRefGoogle Scholar
  31. 31.
    Cohen MU (1936) Zeit F Krist 94:288Google Scholar
  32. 32.
    Parrish W, Wilson AJC (1959) Precision measurement of lattice parameters of polycrystalline specimens. In International Tables for X-Ray Crystallography, vol II. Kinoch Press, Birminham, England, p 223Google Scholar
  33. 33.
    Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice-Hall, Inc., NJ, p 141Google Scholar
  34. 34.
    Buerger MJ (1956) Elementary crystallography. Wiley, NY, p 114Google Scholar
  35. 35.
    Mijangos RR, Alvarez E, Perez-salas R, Duarte C (2004) Opt Mater 25:279. doi: https://doi.org/10.1016/j.optmat.2003.07.004 CrossRefGoogle Scholar
  36. 36.
    Bunget I, Popescu M (1984) Physics of solid dielectrics. Materials Science Monographs, vol 19. Elsevier, Romania, p 153Google Scholar
  37. 37.
    Friedel J (1964) Dislocations. Pergamon Press Ltd, London, p 321Google Scholar
  38. 38.

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • A. E. Cordero-Borboa
    • 1
    Email author
  • R. R. Mijangos
    • 2
  • L. Flores-Morales
    • 3
  1. 1.Departamento de Materia Condensada, Instituto de Física Universidad Nacional Autónoma de MéxicoMexico DFMexico
  2. 2.Centro de Investigación en FísicaUniversidad de SonoraSonoraMexico
  3. 3.Departamento de Física, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoMexico DFMexico

Personalised recommendations