Journal of Materials Science

, Volume 43, Issue 13, pp 4583–4591 | Cite as

Marangoni convection and weld shape variations in He–CO2 shielded gas tungsten arc welding on SUS304 stainless steel

  • Shanping LuEmail author
  • Hidetoshi Fujii
  • Kiyoshi Nogi


Bead-on-plate GTA welding (gas tungsten arc welding) on a SUS304 substrate is carried out to investigate the effect of carbon dioxide gas in the helium base shielding on the oxygen content in the weld pool and the weld shape variations. Experimental results show that small addition of carbon dioxide to the shielding gas can precisely adjust the weld metal oxygen content and change the weld shape from wide shallow type to narrow deep one when the weld pool oxygen content is over the critical value, which is from 68 to 82 ppm, due to the Marangoni convection reversal from the outward to inward mode on the pool surface. The weld depth/width ratio increases two times suddenly when the carbon dioxide content in the torch gas is over 0.4 or 0.2% for 1 mm or 3 mm arc length, respectively. The GTA weld shape depends to a large extent on the pattern and magnitude of the Marangoni convection on the pool surface, which is influenced by the active element oxygen content in the SUS304 pool, temperature coefficient of the surface tension (dσ/dT), and the temperature gradient on the pool surface (dT/dr, r is the radius of the weld pool surface). Changing the welding parameters will alter the temperature distribution and gradient on the pool surface, and thus, affect the magnitude of the Marangoni convection and the final weld shape.


Welding Weld Metal Weld Pool Welding Speed Welding Current 



This study was supported by the New Energy and Industrial Technology Development Organization (NEDO) of Japan, the 21st Century COE Program, the ISIJ research promotion grant, JFE 21st Century Foundation and the Creative Fund of Institute of Metal Research, Chinese Academy of Science (IMR, CAS).


  1. 1.
    Lugwig H (1957) Weld J 36:335sGoogle Scholar
  2. 2.
    Savage WF, Nippes EF, Goodwin GM (1977) Weld J 56:126sGoogle Scholar
  3. 3.
    Oyler GW, Matuszesk RA, Carr CR (1967) Weld J 46:1006Google Scholar
  4. 4.
    Bennett WS, Mills GS (1974) Weld J 53:548sGoogle Scholar
  5. 5.
    Patton BE (1974) Autom Weld 27:1Google Scholar
  6. 6.
    Heiple CR, Ropper JR (1981) Weld J 60:143sGoogle Scholar
  7. 7.
    Heiple CR, Ropper JR (1982) Weld J 61:97sGoogle Scholar
  8. 8.
    Takeuchi Y,Takagi R, Shinoda T (1992) Weld J 71:283sGoogle Scholar
  9. 9.
    Gurevich SM, Zamkov VN (1966) Avtom Svarka 12:13Google Scholar
  10. 10.
    Kuo M,Sun Z, Pan D (2001) Sci Technol Weld Join 6:17. doi: CrossRefGoogle Scholar
  11. 11.
    Anderson PCJ, Wiktorowica R (1996) Weld Met Fabr 64:108Google Scholar
  12. 12.
    Lucas W, Howse D (1996) Weld Met Fabr 64:11Google Scholar
  13. 13.
    Schwemmer DD, Olson DL, Williamson DL (1979) Weld J 58:153sGoogle Scholar
  14. 14.
    Liu F, Lin S, Yang C, Wu L (2002) Trans Chin Weld Inst 23:1Google Scholar
  15. 15.
    Paskell T, Lundin C, Castner H (1997) Weld J 76:57Google Scholar
  16. 16.
    Liu F, Lin S, Yang C,Wu L (2002) Trans Chin Weld Inst 23:5Google Scholar
  17. 17.
    Wang Y, Tsai HL (2001) Metall Mater Trans B 32:501. doi: CrossRefGoogle Scholar
  18. 18.
    Tanaka M, Shimizu T, Terasaki H, Ushio M, Koshi-ishi F, Yang CL (2000) Sci Technol Weld Join 5:397. doi: CrossRefGoogle Scholar
  19. 19.
    Modenesi PJ, Apolimario ER, Pereira IM (2000) J Mater Process Technol 99:260. doi: CrossRefGoogle Scholar
  20. 20.
    Fan D, Zhang RH, Gu YF, Ushio M (2001) Trans JWRI 30:35Google Scholar
  21. 21.
    Howse DS, Lucas W (2000) Sci Technol Weld Join 5:189. doi: CrossRefGoogle Scholar
  22. 22.
    Sire S, Marya S (2001) Proceedings of the 7th international symposium, Kobe, Japan, p 113Google Scholar
  23. 23.
    Sire S, Marya S (2001) Proceedings of the 7th international symposium, Kobe, Japan, p 107Google Scholar
  24. 24.
    Lu SP, Fujii H, Sugiyama H, Tanaka M, Nogi K (2002) Mater Trans 43:2926. doi: CrossRefGoogle Scholar
  25. 25.
    Lu SP, Fujii H, Sugiyama H, Nogi K (2003) Metall Mater Trans A 34:1901. doi: CrossRefGoogle Scholar
  26. 26.
    Leconte S, Paillard P, Chapelle P (2007) Sci Technol Weld Join 12:120. doi: CrossRefGoogle Scholar
  27. 27.
    Rodrigues A, Loureiro A (2005) Sci Technol Weld Join 10:760. doi: CrossRefGoogle Scholar
  28. 28.
    Zhang RH, Fan D (2007) Sci Technol Weld Join 12:15. doi: CrossRefGoogle Scholar
  29. 29.
    Bad’yanov BN, Davdov VA, Ivanov VA (1974) Avtom Svarka 6:1Google Scholar
  30. 30.
    Bad’yanov BN (1975) Avtom Svarka 1:74Google Scholar
  31. 31.
    Heiple CR, Burgardt P (1985) Weld J 64:159sGoogle Scholar
  32. 32.
    Lu SP, Fujii H, Nogi K (2004) Mater Sci Eng A 380:290. doi: CrossRefGoogle Scholar
  33. 33.
    Lu SP, Fujii H, Nogi K (2004) Scripta Mater 51:271. doi: CrossRefGoogle Scholar
  34. 34.
    Lu SP, Fujii H, Nogi K (2004) Metall Mater Trans 35A:2861CrossRefGoogle Scholar
  35. 35.
    Lu SP, Fujii H, Nogi K, Sato T (2007) Quart J Jpn Weld Soc 25:196. doi: CrossRefGoogle Scholar
  36. 36.
    Savitskii MM, Leskov GI (1980) Avtom Svarka 9:17Google Scholar
  37. 37.
    Ludwig HC (1968) Weld J 47:234sGoogle Scholar
  38. 38.
    Ohji T, Make A, Tamura M, Inoue H, Nishiguchi K (1990) J Jpn Weld Soc 8:54CrossRefGoogle Scholar
  39. 39.
    Kou S, Wang YH (1986) Weld J 65:63sGoogle Scholar
  40. 40.
    Heiple CR, Roper JR, Stagner RT, Aden RJ (1983) Weld J 62:72sGoogle Scholar
  41. 41.
    Fujii H, Sogabe N, Kamai M, Nogi K (2001) Proceedings of the 7th international symposium, Kobe, Japan, p 131Google Scholar
  42. 42.
    Leconte S, Paillard P, Chapelle P (2006) Sci Technol Weld Join 11:389. doi: CrossRefGoogle Scholar
  43. 43.
    Leconte S, Paillard P, Saindrenan J (2006) Sci Technol Weld Join 11:43. doi: CrossRefGoogle Scholar
  44. 44.
    Lowke JJ, Tanaka M, Ushio M (2004) The 57th annual assembly of international institute of welding, Osaka, Japan, IIW Doc 212-1053-04Google Scholar
  45. 45.
    Limmaneevichitr C, Kou S (2000) Weld J 79:231sGoogle Scholar
  46. 46.
    Kou S, Sun DK (1985) Metall Trans A 16:203CrossRefGoogle Scholar
  47. 47.
    Sahoo P, Debroy T, Mcnallan MJ (1988) Metall Trans B 19:483. doi: CrossRefGoogle Scholar
  48. 48.
    Taimatsu H, Nogi K, Ogino K (1992) J High Temp Soc 18:14Google Scholar
  49. 49.
    Ito Y, Nakanishi M, Konizo Y (1981) J Jpn Weld Soc 50:1211CrossRefGoogle Scholar
  50. 50.
    Lu SP, Fujii H, Nogi K (2005) ISIJ Int 45:66. doi: CrossRefGoogle Scholar
  51. 51.
    Tsai NS, Eagar TW (1985) Metall Trans B 16:841. doi: CrossRefGoogle Scholar
  52. 52.
    Tanaka M, Terasaki H, Ushio M, Lowke JJ (2003) The 56th annual assembly of international institute of welding, Bucharest, Romania, IIW Doc 212-1040-03Google Scholar
  53. 53.
    Ushio M, Tanaka M, Lowke JJ (2004) IEEE Trans Plasma Sci 32:108. doi: CrossRefGoogle Scholar
  54. 54.
    Burgardt P, Heiple CR (1986) Weld J 65:150sGoogle Scholar
  55. 55.
    Sundell RE, Solomon HD, Harris LP, Wojcik LA, Savage WF, Walsh DW (1983) Interim report to the national science foundation, General Electric Co., Schenectady, NY, SRD-83-006Google Scholar
  56. 56.
    Shirali AA, Mills KC (1993) Weld J 72:347sGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Joining and Welding Research InstituteOsaka UniversityOsakaJapan
  2. 2.Shenyang National Laboratory for Materials Science, Institute of Metal ResearchChinese Academy of ScienceShenyangPeople’s Republic of China

Personalised recommendations