Advertisement

Journal of Materials Science

, Volume 43, Issue 13, pp 4666–4672 | Cite as

Effects of fiber surface treatments on mechanical properties of epoxy composites reinforced with glass fabric

  • Kutlay Sever
  • Mehmet Sarikanat
  • Yoldas Seki
  • Volkan Cecen
  • Ismail H. Tavman
Article

Abstract

In this study, effects of fiber surface treatments on mechanical behavior and fracture mechanism of glass fiber/epoxy composites were investigated experimentally. To change the composition of the glass and regenerate to the hydroxyl groups, activation pretreatment of heat cleaned woven glass fabric was performed using (v/v) HCl aqueous solution at different concentrations before silane treatment. The treatment of silanization of heat cleaned and acid activated glass fibers with γ-glycidoxypropyltrimethoxysilane were performed. In this work, short beam shear test has been conducted to determine the performance of the acid treatment and the silane treatment in terms of the interlaminar shear strength. The silane coating on the heat cleaned glass fibers increased the interlaminar shear strength of the composite. However, the silane coating on the acid activated glass fibers did not improve the interlaminar shear strength of the composite. In addition, the strengths of the glass fabric specimens in tension and flexure were investigated. When the glass fibers are first treated with HCl solution and then with silane coupling agent, the tensile strengths of the composites decreased significantly. Scanning electron photomicrographs of fractured surfaces of composites were performed to explain the failure mechanisms in the composite laminates broken in tension.

Keywords

Glass Fiber Flexural Strength Silane Coupling Agent Silane Coating Silane Treatment 

Notes

Acknowledgement

The authors gratefully acknowledge to Research Foundation of Dokuz Eylül University (project no: 2007.KB.FEN.007) for financial support.

References

  1. 1.
    Park SJ, Jin JS (2003) J Polym Sci Pol Phys 41(1):55. doi: https://doi.org/10.1002/polb.10359 CrossRefGoogle Scholar
  2. 2.
    Vazquez A, Ambrustolo M, Moschiar SM, Reboredo AMM, Gcrard JF (1998) Compos Sci Technol 58(3–4):549. doi: https://doi.org/10.1016/S0266–3538(97)00172-3 CrossRefGoogle Scholar
  3. 3.
    Zhao FM, Takeda N (2000) Compos Part A Appl S 31(11):1203CrossRefGoogle Scholar
  4. 4.
    Ranade RA, Ding J, Wunder SL, Baran GR (2006) Compos Part A Appl S 37(11):2017CrossRefGoogle Scholar
  5. 5.
    Cech V, Prikryl R, Balkova R, Vanek J, Grycova A (2003) J Adhes Sci Technol 17(10):1299 doi: https://doi.org/10.1163/156856103769172751 CrossRefGoogle Scholar
  6. 6.
    Li RZ, Ye L, Mai YW (1997) Compos Part A Appl S 28(1):73CrossRefGoogle Scholar
  7. 7.
    Wang TWH, Blum FD, Dharani LR (1999) J Mater Sci 34(19):4873. doi: https://doi.org/10.1023/A:1004676214290 CrossRefGoogle Scholar
  8. 8.
    Saidpour SH, Richardson MOW (1997) Compos Part A Appl S 28(11):97lCrossRefGoogle Scholar
  9. 9.
    Park SJ, Jin JS (2001) J Colloid Interface Sci 242(1):174. doi: https://doi.org/10.1006/jcis.2001.7788 CrossRefGoogle Scholar
  10. 10.
    Prikryl R, Cech V, Kripal L, Vanek J (2005) Int J Adhes Adhes 25(2):121CrossRefGoogle Scholar
  11. 11.
    Cech V, Inagaki N, Vanek J, Prikryl R, Grycova A, Zemek J (2006) Thin Solid Films 502(1–2):181. doi: https://doi.org/10.1016/j.tsf.2005.07.271 CrossRefGoogle Scholar
  12. 12.
    Kim JK, Mai YW (1998) Engineered interfaces in fiber reinforced composites. Elsevier, UKGoogle Scholar
  13. 13.
    Brill RP, Palmese GR (2006) J Appl Polym Sci 101(5):2784. doi: https://doi.org/10.1002/app.21981 CrossRefGoogle Scholar
  14. 14.
    Park R, Jang J (2004) J Appl Polym Sci 91(6):3730. doi: https://doi.org/10.1002/app.13454 CrossRefGoogle Scholar
  15. 15.
    González-Benito J, Baselga J, Aznar AJ (1999) J Mater Process Technol 93:129. doi: https://doi.org/10.1016/S0924-0136(99)00212-5 CrossRefGoogle Scholar
  16. 16.
    Olmos D, Lopez-Moron R, González-Benito J (2006) Compos Sci Technol 66(15):2758. doi: https://doi.org/10.1016/j.compscitech.2006.03.004 CrossRefGoogle Scholar
  17. 17.
    González-Benito J (2003) J Colloid Interface Sci 267(2):326. doi: https://doi.org/10.1016/S0021-9797(03)00550-2 CrossRefGoogle Scholar
  18. 18.
    Tanaka H, Kuraoka K, Yamanaka H, Yazawa TJ (1997) Non-Cryst Solids 215(2–3):262. doi: https://doi.org/10.1016/S0022-3093(97)00103-8 CrossRefGoogle Scholar
  19. 19.
    Jones RL, Betz D (2004) J Mater Sci 39(18):5633. doi: https://doi.org/10.1023/B:JMSC.0000040069.00158.01 CrossRefGoogle Scholar
  20. 20.
    Qiu Q, Kumosa M (1997) Compos Sci Technol 57(5):497. doi: https://doi.org/10.1016/S0266-3538(96)00158-3 CrossRefGoogle Scholar
  21. 21.
    Shih GC, Ebert LJ (1986) Composites 17(4):309. doi: https://doi.org/10.1016/0010-4361(86)90748-2 CrossRefGoogle Scholar
  22. 22.
    Iglesias JG, González-Benito J, Aznar AJ, Bravo J, Baselga J (2002) J Colloid Interface Sci 250(1):251. doi: https://doi.org/10.1006/jcis.2002.8332 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Kutlay Sever
    • 1
  • Mehmet Sarikanat
    • 2
  • Yoldas Seki
    • 3
  • Volkan Cecen
    • 1
  • Ismail H. Tavman
    • 1
  1. 1.Department of Mechanical EngineeringDokuz Eylul UniversityBornovaTurkey
  2. 2.Department of Mechanical EngineeringEge UniversityBornovaTurkey
  3. 3.Department of ChemistryDokuz Eylul UniversityBucaTurkey

Personalised recommendations