Journal of Materials Science

, Volume 43, Issue 13, pp 4607–4617 | Cite as

Electrical conductivity enhancement of a polymer using butyl glycidyl ether (BGE)–lithium hexafluorophosphate (LiPF6) complex

  • Soumen Jana
  • Wei-Hong Zhong


In this study, we investigated the improvement in electrical conductivity of a polymer with the addition of dissolved lithium hexafluorophosphate (LiPF6) in an ether based solvent, butyl glycidyl ether (BGE). Thin film samples were fabricated by adding LiPF6 (up to 1 wt%) to poly (methyl-methacrylate) (PMMA). Film with 0.75% LiPF6 showed the highest improvement of electrical conductivity by three orders of magnitude. Both FTIR spectra and X-ray diffraction studies confirmed the formation of BGE–LiPF6 complex. Differential Scanning Calorimetry was used to characterize the PMMA/LiPF6 specimens further. Dielectric experiments revealed the existence of multiple composition dependent relaxation processes: β (high frequency) and β (low frequency) relaxation processes. The results suggest that electrical conductivity could be improved without influencing the domain polymer and the composite materials, including their processability. This work suggests that the conductivity of nanocomposites with various solid conductive fillers may be sufficiently enhanced in combination with this ion conduction approach involving a “liquid conductive filler.” Since BGE is compatible with epoxy molecules, further study is expected to lead to an effective solution to conductive epoxy composites in their wide field of applications including aircraft and multifunctional energy sources such as structural batteries.


Differential Scanning Calorimetry PMMA LiPF6 Lithium Salt Alkali Metal Salt 



The authors are very grateful to Mr. Russell G. Maguire of the Boeing Company for fruitful discussions on this work. The authors gratefully acknowledge the support from NSF through NIRT grant 0506531. This work is also partially supported by NASA through grant NNM04AA62G.


  1. 1.
    Kovacs JZ, Velagala BS, Schulte K, Bauhofer W (2007) Comp Sci Technol 67:922. doi: CrossRefGoogle Scholar
  2. 2.
    Dalmas F, Cavaille JY, Gauthier C, Chazaeau L, Dendievel R (2007) Comp Sci Technol 67:829. doi: CrossRefGoogle Scholar
  3. 3.
    Saikia D, Kumar A (2005) Euro Polym J 41:563. doi: CrossRefGoogle Scholar
  4. 4.
    Trangaris GM, Psarras GC, Kouloumbi N (1998) J Mater Sci 33:2027. doi: CrossRefGoogle Scholar
  5. 5.
    Rajendran S, Sivakumar P, Babu RS (2007) J Power Sour 164:815. doi: CrossRefGoogle Scholar
  6. 6.
    Wang HX, Wang ZX, Li H, Meng QB, Chen LQ (2007) Electrochim Acta 52:2039. doi: CrossRefGoogle Scholar
  7. 7.
    Uma T, Mahalingam T, Stimming U (2005) Mater Chem Phys 90:239. doi: CrossRefGoogle Scholar
  8. 8.
    Lee SH, Cho KI, Choi JB, Shin DW (2006) J Power Sour 162:1341. doi: CrossRefGoogle Scholar
  9. 9.
    Morales E, Acosta JL (1999) Electrochim Acta 45:1049. doi:–4686(99)00300-X CrossRefGoogle Scholar
  10. 10.
    Cazzanelli E, Croce F, Appetecchi B, Benevelli F, Mustarelli P (1997) J Chem Phys 107:5740. doi: CrossRefGoogle Scholar
  11. 11.
    Croce F, Sacchetti S, Scrosati B (2006) J Power Sour 161:560. doi: CrossRefGoogle Scholar
  12. 12.
    Wintersgill MC, Fontanella JJ, Stallworth PE, Newman SA, Chung SH, Greenbaum SG (2000) Solid State Ionics 135:155. doi:–2738(00)00295–2 CrossRefGoogle Scholar
  13. 13.
    Jeon BH, Yeon JH, Chung JJ (2003) J Mater Process Technol 143–144:93. doi: CrossRefGoogle Scholar
  14. 14.
    Bendler JT, Fontanella JJ, Shlesinger MF, Wintersgill MC (2001) Electrochimica Acta 46:1615. doi: CrossRefGoogle Scholar
  15. 15.
    Castillo J, Delgado I, Chacón M, Vargas RA (2001) Electrochimica Acta 46:1695. doi: CrossRefGoogle Scholar
  16. 16.
    Basak P, Manorama SV (2004) Euro Polym J 40:1155. doi: CrossRefGoogle Scholar
  17. 17.
    Kurian M, Galvin ME, Trapa PE, Sadoway DR, Mayes AM (2005) Electrochim Acta 50:2125. doi: CrossRefGoogle Scholar
  18. 18.
    Ramesh S, Winie T, Arof AK (2007) Euro Polym J 43:1963. doi: CrossRefGoogle Scholar
  19. 19.
    Huang YP, Woo EM (2001) Polymer 42:6493. doi: CrossRefGoogle Scholar
  20. 20.
    Cho CW, Cho YS, Yeo JG, Kim J, Paik U (2003) J Euro Ceram Soc 23:2315. doi: CrossRefGoogle Scholar
  21. 21.
    Vaughan AS, Zhao Y, Barré LL, Sutton SJ, Swingler SG (2003) Euro Polym J 39:355. doi: CrossRefGoogle Scholar
  22. 22.
    Yang S, Benitez R, Fuentes A, Lozano K (2007) Comp Sci Technol 67:1159. doi: CrossRefGoogle Scholar
  23. 23.
    Tambelli CE, Donsco JP, Magon CJ, Pereira EC, Rosario AV (2007) Electrochim Acta 53:1535. doi: CrossRefGoogle Scholar
  24. 24.
    Tsunashima K, Yonekawa F, Sugiya Masashi S (2008) Chem Lett 37:314. doi: CrossRefGoogle Scholar
  25. 25.
    Krouse D, Guo Z, Kranbuehl DE (2005) J Non-Crystal Solids 351:2831. doi: CrossRefGoogle Scholar
  26. 26.
    Battisti D, Nazri GA, Klassen B, Aroca R (1993) J Phys Chem 97:5826. doi: CrossRefGoogle Scholar
  27. 27.
    Southall JP, Hubbard HV, Johnston F, Rogers V, Davies GR, Mcintyre JE, Ward IM (1996) Solid State Ionics 85:51. doi: CrossRefGoogle Scholar
  28. 28.
    Sharma JP, Sekhon SS (2006) J Mater Sci 41:3617. doi: CrossRefGoogle Scholar
  29. 29.
    Shanmukaraja D, Wanga GX, Muruganc R, Liua HK (2008) J Phys Chem Solid 69:243. doi: CrossRefGoogle Scholar
  30. 30.
    Chiu CY, Yen YJ, Kuo SW, Chen HW, Chang FC (2007) Polymer 46:1329. doi: CrossRefGoogle Scholar
  31. 31.
    Chen HW, Lin TP, Chang FC (2002) Polymer 43:5281. doi: CrossRefGoogle Scholar
  32. 32.
    Tang Z, Wang J, Chen Q, He W, Shen C, Mao X, Zhang J (2007) Electrochim Acta 52:6638. doi: CrossRefGoogle Scholar
  33. 33.
    Morrisson MT, Boyd RN (1987) Organic chemistry. Allyn and Bacon, Boston MA, p 721Google Scholar
  34. 34.
    Yuan L, Liang G, Xie J, Li L, Guo J (2006) Polymer 47:5338. doi: CrossRefGoogle Scholar
  35. 35.
    Cole KS, Cole RH (1969) J Chem Phys 1:341Google Scholar
  36. 36.
    Chelkowski A (1980) Dielectric physics. Elsevier Scientific Publisher Company, AmsterdamGoogle Scholar
  37. 37.
    Natesan B, Karan NK, Rivera MB, Aliev FM, Katiyar RS (2006) J Non-Crystal Solid 352:5205. doi: CrossRefGoogle Scholar
  38. 38.
    Eliasson H, Albinsson I, Mellander BE (1998) Electrochim Acta 43:1459. doi: CrossRefGoogle Scholar
  39. 39.
    Reicha FM, El-Hiti M, El-Sonabati AZ, Diab MA (1991) J Phys D Appl Phys 24:369. doi: CrossRefGoogle Scholar
  40. 40.
    Macdonald JR (ed) (1987) Impedance spectroscopy. Wiley, New YorkGoogle Scholar
  41. 41.
    Mark HF (ed) (1964) Ency. of polymer science and engineering, vol 1. Wiley-Interscience Publication, Wiley, New YorkGoogle Scholar
  42. 42.
    Yoshimi S, Matsui T, Kikuchi R, Eguchi K (2008) J Power Sour 179:497. doi: CrossRefGoogle Scholar
  43. 43.
    Lu H, Zhnag X, He Bo, Zhang H (2005) J Appl Polym Sci 102:3590. doi: CrossRefGoogle Scholar
  44. 44.
    Steeman PAM, Maurer FHJ (1992) Polymer 33:4236. doi: CrossRefGoogle Scholar
  45. 45.
    Pathmanathan K, Johari GP (1993) J Polym Sci B Polym Phys 31:265. doi: CrossRefGoogle Scholar
  46. 46.
    Bykova Z, Klugman I, Sorkin YI (1980) Measure Tech 23:936. doi: CrossRefGoogle Scholar
  47. 47.
    Mirtaheri P, Grimnes S, Martinsen OG (2005) IEEE Trans Biomed Eng 52:2093. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.School of Mechanical and Materials EngineeringWashington State UniversityPullmanUSA

Personalised recommendations