Advertisement

Journal of Materials Science

, Volume 43, Issue 15, pp 5061–5067 | Cite as

Direct measurement of drainage curves in infiltration of SiC particle preforms: influence of interfacial reactivity

  • J. M. MolinaEmail author
  • M. Bahraini
  • L. Weber
  • A. Mortensen
Interface Science

Abstract

We present dynamic measurement of drainage curves in two systems having relevance to metal matrix composite processing, namely SiC/Al and SiC/Al-12.2at%Si. Data show that liquid/solid chemical reactions that cause a lowering of the contact angle do indeed drive spontaneous ingress of metal into the preforms at fixed applied pressure; however, these also hinder infiltration under continuous infiltration, lower pressurization rates causing a reduced level of penetration by the metal at given pressure. Metal/reinforcement chemical interactions that can drive wetting by lowering the contact angle are, therefore, not necessarily beneficial in the pressure infiltration processing of particle reinforced metals.

Keywords

Sessile Drop Pressurization Rate Triple Line Aluminum Carbide Pressure Infiltration 

Notes

Acknowledgements

The authors gratefully acknowledge financial support of this research from NEDO International Joint Research Grant Program, Project 01MB7, CTI project no. 6752-2 and the internal funds from the Laboratory of Mechanical Metallurgy at EPFL.

References

  1. 1.
    Eustathopoulos N (1998) Acta Mater 46:2319. doi: https://doi.org/10.1016/S1359-6454(97)00388-1 Google Scholar
  2. 2.
    Eustathopoulos N (2005) Curr Opin Solid State Mater Sci 9:152. doi: https://doi.org/10.1016/j.cossms.2006.04.004 CrossRefGoogle Scholar
  3. 3.
    Eustathopoulos N, Nicholas MG, Drevet B (1999) Wettability at high temperatures. Pergamon Press, Oxford, UKGoogle Scholar
  4. 4.
    Laurent V, Chatain D, Eustathopoulos N (1991) Mater Sci Eng A 135:89. doi: https://doi.org/10.1016/0921-5093(91)90542-U CrossRefGoogle Scholar
  5. 5.
    Laurent V, Rado C, Eustathopoulos N (1996) Mater Sci Eng A 205:1. doi: https://doi.org/10.1016/0921-5093(95)09896-8 CrossRefGoogle Scholar
  6. 6.
    Naidich JV (1981) Progress in surface and membrane science, vol 14. Academic Press, New YorkGoogle Scholar
  7. 7.
    Kölher W (1975) Aluminium 51:443Google Scholar
  8. 8.
    Laurent V, Chatain D, Eustathopoulos N (1987) J Mater Sci 22:244. doi: https://doi.org/10.1007/BF01160579 CrossRefGoogle Scholar
  9. 9.
    Lloyd DJ (1989) Compos Sci Technol 35:159. doi: https://doi.org/10.1016/0266-3538(89)90093-6 CrossRefGoogle Scholar
  10. 10.
    Shen P, Fujii H, Matsumoto T, Nogi K (2004) Metall Mater Trans A 35:583. doi: https://doi.org/10.1007/s11661-004-0369-0 CrossRefGoogle Scholar
  11. 11.
    Bahraini M, Molina JM, Weber L, Mortensen A (2007) Mater Sci Eng A (accepted)Google Scholar
  12. 12.
    Mortensen A, Wong T (1990) Metall Trans A 21:2257. doi: https://doi.org/10.1007/BF02647888 CrossRefGoogle Scholar
  13. 13.
    Molina JM, Rodriguez-Guerrero A, Bahraini M, Weber L, Narciso J, Rodriguez-Reinoso F, Louis E, Mortensen A (2007) Scripta Mater 56:991. doi: https://doi.org/10.1016/j.scriptamat.2007.01.042 CrossRefGoogle Scholar
  14. 14.
    Bahraini M, Molina JM, Kida M, Weber L, Narciso J, Mortensen A (2005) Curr Opin Solid State Mater Sci 9:196. doi: https://doi.org/10.1016/j.cossms.2006.02.007 CrossRefGoogle Scholar
  15. 15.
    Mortensen A, Jin I (1992) Int Mater Rev 37:101CrossRefGoogle Scholar
  16. 16.
    Mortensen A (2000) In: Clyne TW (vol ed), Kelly A, Zweben C (series ed) Comprehensive composite materials, vol 3. Metal matrix composites. Pergamon Press, Oxford, UKGoogle Scholar
  17. 17.
    Chiang YM, Messner RP, Terwilliger CD, Behrendt DR (1991) Mater Sci Eng A 144:63. doi: https://doi.org/10.1016/0921-5093(91)90210-E CrossRefGoogle Scholar
  18. 18.
    Nakae H, Fujii H, Nakajima K, Goto A (1997) Mater Sci Eng A 223:21. doi: https://doi.org/10.1016/S0921-5093(96)10488-3 CrossRefGoogle Scholar
  19. 19.
    Bahraini M, Weber L, Narciso J, Mortensen A (2005) J Mater Sci 40:2487. doi: https://doi.org/10.1007/s10853-005-1980-1 CrossRefGoogle Scholar
  20. 20.
    Geiger GH, Poirier DR (1973) Transport phenomena in metallurgy. Addison-Wesley, Reading, MAGoogle Scholar
  21. 21.
    Bahraini M (2007) Characterization of capillary forces during liquid metal infiltration. Phd-thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), SwitzerlandGoogle Scholar
  22. 22.
    Morrow NR (1970) Ind Eng Chem 62:32. doi: https://doi.org/10.1021/ie50726a006 CrossRefGoogle Scholar
  23. 23.
    Levi G, Kaplan W (2003) Acta Mater 51:2793CrossRefGoogle Scholar
  24. 24.
    Levi G, Kaplan W (2002) Acta Mater 50:75. doi: https://doi.org/10.1016/S1359-6454(01)00333-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • J. M. Molina
    • 1
    • 2
    Email author
  • M. Bahraini
    • 1
  • L. Weber
    • 1
  • A. Mortensen
    • 1
  1. 1.Laboratory of Mechanical Metallurgy, Institute of MaterialsEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.Dpto. de Física AplicadaUniversidad de AlicanteAlicanteSpain

Personalised recommendations