Advertisement

Journal of Materials Science

, Volume 43, Issue 13, pp 4592–4606 | Cite as

Assessment of θ-projection concept and fracture cavitation

  • A. BaldanEmail author
  • E. Tascioglu
Article

Abstract

The empirical approach to creep, termed θ-projection concept, is applied to the constant-load data of conventionally cast nickel-base superalloy IN-100 at constant temperature (900 °C). The normal creep curves, obtained at various initial stresses (σA = 200−400 MPa), could be accurately represented by this concept. The change in creep curve shape with stress from tertiary dominated to primary dominated view is presented by the change in the ratio of primary (ɛp) and tertiary strain (ɛt) components to rupture strain (ɛR). It is predicted that failure in the present creep conditions is dominated by the GB cavitation and the growth of the cavities is controlled by the coupled GB diffusion and power-law creep mechanism. In an attempt to provide a physical significance to θ-parameters, it is found that the internal structural variable theory and continuous GB cavitation account well, with suitable assumptions, for the θ description of primary and tertiary creep curves, respectively.

Keywords

Cavitation Creep Rate Grain Boundary Creep Strain Creep Curve 

References

  1. 1.
    Evans M (2000) J Strain Anal 35:389CrossRefGoogle Scholar
  2. 2.
    Evans RW (1989) Mater Sci Technol 5:699–707CrossRefGoogle Scholar
  3. 3.
    Larson FR, Miller J (1952) Trans ASME 74:756Google Scholar
  4. 4.
    Orr RL, Sherby OD, Dorn JE (1945) Trans ASM 46:113Google Scholar
  5. 5.
    Manson SS, Haferd AM (1953) NACA. TN 2890, MarchGoogle Scholar
  6. 6.
    Evans RW, Parker JD, Wilshire B (1982) In: Wilshire B, Owen DRJ (eds) Recent advances in creep and fracture of engineering materials and structures. Pineridge Press, Swansea, Swansea, p 135Google Scholar
  7. 7.
    Wilshire B (1989) New lamp's for old. In: Taplin DMR, Knott JF, Lewis MH (eds) Second Parsons International Turbine Conference on the “Materials Development in Turbo-Machinary Design”. The Institute of Metals, London, Parsons Press, Trinity College, Dublin, pp 263–268Google Scholar
  8. 8.
    Evans RW, Wilshire B (1985) Creep of metals and alloys. The Institute of Metals, LondonGoogle Scholar
  9. 9.
    Evans RW (2000) Mater Sci Technol 16:6CrossRefGoogle Scholar
  10. 10.
    Beden I, Brown SGR, Evans RW, Wilshire B (1987) Res Mech 22:45Google Scholar
  11. 11.
    Evans RW, Brown SGR, Wilshire B (1986) Mater Sci Eng 84:147CrossRefGoogle Scholar
  12. 12.
    Evans RW, Scharning PJ, Wilshire B (1985) In: Wilshire B, Evans RW (eds) Creep behaviour of crystalline solids. Pineridge Press, Swansea, p 201Google Scholar
  13. 13.
    Evans RW, Murakami T, Wilshire B (1988) Trans J Br Ceram Soc 87:54Google Scholar
  14. 14.
    Li G, Sakai T, Endo T (1987) An Application of Creep Time Law to the Life Prediction of a Nickel-Base Superalloy. In: Proceedings of the Third International Conference on the “Creep and Fracture of Engineering Materials and Structures”, held at University College, Swansea, 5–10 April, 1987, pp 803–813Google Scholar
  15. 15.
    Frost HJ, Ashby MF (1982) Deformation-mechanism maps. Pergamon Press, Oxford, p 1Google Scholar
  16. 16.
    Brown SGR, Evans RW, Wilshire B (1987) Mater Sci Technol 3:23CrossRefGoogle Scholar
  17. 17.
    Evans RW, Fadlalla AA, Wilshire B (1990) In: Wilshire B, Evans RW (eds) Proceedings of the 4th international conference on “Creep and Fracture of Engineering Materials and Structures”. Swansea, The Institute of Materials, London, p 1009Google Scholar
  18. 18.
    Evans RW, Wilshire B (1987) Power law creep of polycrystalline copper. In: Wilshire B, Evans RW (eds) Proceedings of the Third International Conference on “Creep and Fracture of Engineering Materials and Structures” held at University College, Swansea, UK, 5–10 April 1987. Inst. of Metals, London, pp 59–70Google Scholar
  19. 19.
    Evans RW, Wilshire B (1987) Mater Sci Technol 3:701CrossRefGoogle Scholar
  20. 20.
    Nix WD, Gibling JC (1983) Mechanisms of time dependent flow and fracture. The American Society for Metals, Metals Park Google Scholar
  21. 21.
    Evans M (2000) J Mater Sci 35:2937CrossRefGoogle Scholar
  22. 22.
    Evans RW (2000) Proc R Soc Lond A 436:835CrossRefGoogle Scholar
  23. 23.
    Cottrell AH, Aytekin V (1950) JIM 77:389Google Scholar
  24. 24.
    Evans RW, Wilshire B (1996) In: Krausz AS, Krauss K (eds) Unified constitutive laws of deformation. Academic Press, p 108Google Scholar
  25. 25.
    Baldan A (1998) J Mater Sci 33:3629CrossRefGoogle Scholar
  26. 26.
    Baldan A (1991) J Mater Sci 26:3409CrossRefGoogle Scholar
  27. 27.
    Perry AJ (1974) J Mater Sci 9:1016CrossRefGoogle Scholar
  28. 28.
    Dennison JP, Wilshire B (1962) J Inst Metals 91:343Google Scholar
  29. 29.
    Williams KR, Wilshire B (1977) Mater Sci Eng 28:289CrossRefGoogle Scholar
  30. 30.
    Ashby MF, Dyson BF (1984) In: Valluri SR, Taplin DMR, Rama Rao P, Knott JF, Dubey R (eds) Proceedings of the 6th international conference on fracture (ICF6), New Delhi, India, vol 1. Pergamon Press, Exeter, p 3Google Scholar
  31. 31.
    Leckie FA, Hayhurst DR (1977) Acta Metall 25:1059CrossRefGoogle Scholar
  32. 32.
    Needleman A, Rice JR (1980) Acta Metall 28:1315CrossRefGoogle Scholar
  33. 33.
    Edward GH, Ashby MF (1979) Acta Metall 27:1505CrossRefGoogle Scholar
  34. 34.
    Cocks ACF, Ashby MF (1982) Progr Mater Sci 27:189CrossRefGoogle Scholar
  35. 35.
    Frost HJ, Ashby MF (1982) Deformation mechanism maps, the plasticity and creep of metals and ceramics. Pergamon Press, Oxford, p 55Google Scholar
  36. 36.
    Mott NF, Nabarro FRN (1948) Strength of solids. Physical Society, London, p 1Google Scholar
  37. 37.
    Mott NF (1953) Phil Mag 44:742CrossRefGoogle Scholar
  38. 38.
    Nix WD, Ilschner B (1979) In: Haasen P, Gerold V, Kostorz G (eds) Proceedings of the 5th international conference on strength of metals and alloys ICMA5, Aachen, vol 3. Pergamon Press, Oxford, p 1503Google Scholar
  39. 39.
    McLean D (1966) Rep Prog Phys 29:1CrossRefGoogle Scholar
  40. 40.
    Lagneborg R (1969) Met Sci J 3:161CrossRefGoogle Scholar
  41. 41.
    Boettner RC, Robertson WD (1961) Trans AIME 221:613Google Scholar
  42. 42.
    Bowring P, Davies PW, Wilshire B (1968) Metal Sci J 2:168CrossRefGoogle Scholar
  43. 43.
    Harris JE, Tucker MO, Greenwood GW (1974) Metal Sci 8:311CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringUniversity of MersinMersinTurkey
  2. 2.Department of Mechanical EngineeringEastern Mediterranean UniversityMersinTurkey

Personalised recommendations