Journal of Materials Science

, Volume 43, Issue 14, pp 4753–4759 | Cite as

Electrodeposition of lead zirconate titanate nanotubes

  • A. Nourmohammadi
  • M. A. BahrevarEmail author
  • S. Schulze
  • M. Hietschold


Lead zirconate titanate (PZT) nanotubes have been grown using porous anodic alumina templates. Sol–gel electrophoretic deposition method was utilized to form the nanotubes on pore walls. The templates were prepared using various anodizing voltages to achieve different pore diameters. Phosphoric acid solution was employed as the electrolyte. Stabilized PZT sols were prepared using lead acetate trihydrate and modified precursors of zirconium and titanium with acetic acid. The filled templates were then sintered at 700 °C. Scanning electron microscopy (SEM) shows that tubular PZT arrays have been efficiently grown in the alumina templates. Transmission electron microscopy (TEM) further confirms the tubular form and polycrystalline nature of the tubes. Energy dispersive X-ray (EDX) analyses also confirm the composition of the tubes. X-ray diffraction (XRD) spectra indicate the presence of the perovskite PZT as the main phase.


Perovskite Lead Zirconate Titanate Electrophoretic Deposition Caustic Soda Solution Porous Anodic Alumina Template 



The authors thank Mrs. Gisela Baumann from “Solid Surfaces Analysis and Electron Microscopy Group” at Chemnitz University of Technology, for scanning electron microscopy experiments and also for her contribution in chemical processes.


  1. 1.
    Morrison FD, Luo Y, Szafraniak I, Nagarajan V, Wehrspohn RB, Steinhart M, Wendorff JH, Zakharov ND, Mishina ED, Vorotilov KA, Sigov AS, Nakabayashi S, Alexe M, Ramesh R, Scott JF (2003) Rev Adv Mater Sci 4:114Google Scholar
  2. 2.
    Luo Y, Szafraniak I, Zakharov ND, Nagarajan V, Steinhart M, Wehrspohn RB, Wendorff JH, Ramesh R, Alexe M (2003) Appl Phys Lett 83:440. doi: CrossRefGoogle Scholar
  3. 3.
    Wei X, Vasiliev AL, Padture NP (2005) J Mater Res 20:2140. doi: CrossRefGoogle Scholar
  4. 4.
    Zhao L, Steinhart M, Yu J, Goesele U (2006) J Mater Res 21:685. doi: CrossRefGoogle Scholar
  5. 5.
    Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, LondonGoogle Scholar
  6. 6.
    Johansson A (2006) Template-based fabrication of nanostructured materials, Acta, Universitatis Upsaliensis. Uppsala University Press, UppsalaGoogle Scholar
  7. 7.
    Schwartz RW (1997) Chem Mater 9:2325. doi: CrossRefGoogle Scholar
  8. 8.
    Steinhart M, Wehrspohn RB, Goesele U, Wendorff JH (2004) Angew Chem Int Ed 43:1334. doi: CrossRefGoogle Scholar
  9. 9.
    Limmer SJ, Seraji S, Forbess MJ, Wu Y, Chou TP, Nguyen C, Cao G (2001) Adv Mater 13:269. doi:10.1002/1521-4095(200108)13:16≤1269::AID-ADMA1269≥3.0.CO;2-SCrossRefGoogle Scholar
  10. 10.
    Ohgai T, Hoffer X, Fabian A, Gravier L, Ansermet JP (2003) J Mater Chem 13:2530. doi: CrossRefGoogle Scholar
  11. 11.
    Meng G, Cao A, Cheng JY, Vijayaraghavan A, Jung YJ, Shima M, Ajayan PM (2005) J Appl Phys 97:064303. doi: CrossRefGoogle Scholar
  12. 12.
    Yin AJ, Li J, Jian W, Bennett AJ, Xu JM (2001) Appl Phys Lett 79:1039. doi: CrossRefGoogle Scholar
  13. 13.
    Lombardi I, Magagnin L, Cavallotti PL, Carraro C, Maboudian R (2006) Electrochem Solid-State Lett 9:D13. doi: CrossRefGoogle Scholar
  14. 14.
    Zhao AW, Ye CH, Meng GW, Zhang LD, Ajayan PM (2003) J Mater Res 18:2318. doi: CrossRefGoogle Scholar
  15. 15.
    Limmer SJ, Seraji S, Wu Y, Chou TP, Nguyen C, Cao G (2002) Adv Funct Mater 12:59. doi:10.1002/1616-3028(20020101)12:1≤59::AID-ADFM59≥3.0.CO;2-BCrossRefGoogle Scholar
  16. 16.
    Limmer SJ, Cao G (2002) Adv Mater 15:427. doi: CrossRefGoogle Scholar
  17. 17.
    Cao G (2004) J Phys Chem B 108:19921. doi: CrossRefGoogle Scholar
  18. 18.
    Jessensky O, Müller F, Gösele U (1998) Appl Phys Lett 72:1173. doi: CrossRefGoogle Scholar
  19. 19.
    Li AP, Müller F, Birner A, Nielsch K, Gösele U (1999) Adv Mater 11:483. doi:10.1002/(SICI)1521-4095(199904)11:6≤483::AID-ADMA483≥3.0.CO;2-ICrossRefGoogle Scholar
  20. 20.
    Yi G, Sayer M (1996) J Sol–Gel Sci Technol 6:65. doi: CrossRefGoogle Scholar
  21. 21.
    Yi G, Sayer M (1996) J Sol–Gel Sci Technol 6:75. doi: CrossRefGoogle Scholar
  22. 22.
    Besra L, Liu M (2007) Prog Mater Sci 52:1. doi: CrossRefGoogle Scholar
  23. 23.
    McCafferty E (2003) Corros Sci 45:301. doi: CrossRefGoogle Scholar
  24. 24.
    Guo QX, Hachiya Y, Tanaka T, Nishio M, Ogawa H (2006) J Lumin 119–120:253CrossRefGoogle Scholar
  25. 25.
    Vrublevsky I, Parkoun V, Schreckenbach J, Goedel WA (2006) Appl Surf Sci 252:5100. doi: CrossRefGoogle Scholar
  26. 26.
    Vrublevsky I, Jagminas A, Schreckenbach J, Goedel WA (2007) Appl Surf Sci 253:4680. doi: CrossRefGoogle Scholar
  27. 27.
    Miller WD, Chapin LN, Evans Jr JT (1990) US patent no. 4,946,710Google Scholar
  28. 28.
    Polli AD, Lange FF, Levi CG (2000) J Am Ceram Soc 83:873CrossRefGoogle Scholar
  29. 29.
    Wilkinson AP, Speck JS, Cheetham AK, Natarajan S, Thomas JM (1994) Chem Mater 6:750. doi: CrossRefGoogle Scholar
  30. 30.
    Wiedemann KE (1983) MS thesis, Virginia Polytechnic Institute & State UniversityGoogle Scholar
  31. 31.
    Kwok CK, Desu SB (1992) Appl Phys Lett 60:1430. doi: CrossRefGoogle Scholar
  32. 32.
    Bel Hadj Tahar R, Bel Hadj Tahar N, Ben Salah A (2007) J Mater Sci 42:9801. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • A. Nourmohammadi
    • 1
    • 2
  • M. A. Bahrevar
    • 2
    Email author
  • S. Schulze
    • 1
  • M. Hietschold
    • 1
  1. 1.Solid Surfaces Analysis and Electron Microscopy Group, Institute of PhysicsChemnitz University of TechnologyChemnitzGermany
  2. 2.Semiconductors DepartmentMaterials and Energy Research Center (MERC)KarajIran

Personalised recommendations