Advertisement

Journal of Materials Science

, Volume 43, Issue 17, pp 5998–6004 | Cite as

Atomic force microscopy tip torsion contribution to the measurement of nanomechanical properties

  • C. M. Almeida
  • R. PrioliEmail author
Article

Abstract

The nanomechanical properties of polymethyl methacrylate and indium phosphide were measured with an atomic force microscope and a nanoindentation system. The elastic moduli measured with the atomic force microscope are in good agreement with the values obtained with the nanoindentation system. The hardness is shown to be affected by the tip radius used in our experiments. The cantilever vertical and lateral movements were independently analyzed during nanoindentation, and the tip torsion can be attributed to a change from elastic to plastic deformation regimes of materials during force microscopy nanoindentation. An analysis of the lateral movement of the laser beam associated with the cantilever torsion was used to determine the material yield stress.

Keywords

Atomic Force Microscope PMMA Indium Phosphide Atomic Force Microscope Cantilever Nanomechanical Property 

Notes

Acknowledgements

This work was partially supported by the Brazilian Agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ). The authors wish to thank L. Kuhn from Hysitron for fruitful discussions.

References

  1. 1.
    Bushan B, Koinkar VN (1994) Appl Phys Lett 64(13):1653. doi: https://doi.org/10.1063/1.111949 CrossRefGoogle Scholar
  2. 2.
    Garcia R, Perez R (2002) Surf Sci Rep 47:197. doi: https://doi.org/10.1016/S0167-5729(02)00077-8 CrossRefGoogle Scholar
  3. 3.
    Cretin B, Vairac P (1998) Appl Phys A 66:S235. doi: https://doi.org/10.1007/s003390051137 CrossRefGoogle Scholar
  4. 4.
    Tai K, Dao M, Suresh S, Palazoglu A, Ortiz C (2007) Nat Mater 6:454. doi: https://doi.org/10.1038/nmat1911 CrossRefGoogle Scholar
  5. 5.
    Vanlandingham MR, McKnight SH, Palmese GR, Elings JR, Huang X, Bogetti TA, Eduljee RF, Gillespie JW (1997) J Adhes 64:31. doi: https://doi.org/10.1080/00218469708010531 CrossRefGoogle Scholar
  6. 6.
    Kracke B, Damaschke B (2000) Appl Phys Lett 77(3):361. doi: https://doi.org/10.1063/1.126976 CrossRefGoogle Scholar
  7. 7.
    Oliver WC, Pharr GM (1992) J Mater Res 7(6):1564. doi: https://doi.org/10.1557/JMR.1992.1564 CrossRefGoogle Scholar
  8. 8.
    Swiss Center for Electronics and Microtechnology, AFM tip tester. https://doi.org/www.csem.ch/fs/nanotech.htm, CSEM, Neuchatel, Switzerland. Last visited: 12 December 2007
  9. 9.
    Villarrubia JS (1997) J Res Natl Inst Stand Technol 102:425CrossRefGoogle Scholar
  10. 10.
    Billmeyer FW (1984) Textbook of polymer science, 3rd edn. Wiley-Interscience, New YorkGoogle Scholar
  11. 11.
    Swadener JG, George EP, Pharr GM (2002) J Mech Phys Solids 50:681. doi: https://doi.org/10.1016/S0022-5096(01)00103-X CrossRefGoogle Scholar
  12. 12.
    Hyon CK, Choi SC, Hwang SW, Ahn D, Young K, Kim EK (1999) Appl Phys Lett 75:292. doi: https://doi.org/10.1063/1.124351 CrossRefGoogle Scholar
  13. 13.
    Field JS, Swain MV (1993) J Mater Res 8(2):297. doi: https://doi.org/10.1557/JMR.1993.0297 CrossRefGoogle Scholar
  14. 14.
    Bourhis Le E, Patriarche G (2003) Prog Cryst Growth Charact Mater 47:1. doi: https://doi.org/10.1016/j.pcrysgrow.2004.09.001 CrossRefGoogle Scholar
  15. 15.
    Bradby JE, Williams JS, Wong-Leung J, Swain MV, Munroe P (2001) Appl Phys Lett 78:3235. doi: https://doi.org/10.1063/1.1372207 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Departamento de FísicaPontifícia Universidade Católica do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations