Journal of Materials Science

, Volume 43, Issue 13, pp 4455–4465 | Cite as

New type of low-dielectric composites based on o-cresol novolac epoxy resin and mesoporous silicas: fabrication and performances

  • Jingjing Lin
  • Xiaodong WangEmail author


A series of o-cresol novolac epoxy (o-CNER)-based composites containing various amount of SBA-15, SBA-16, and MSU-X type mesoporous silicas were prepared, and their performances were evaluated. Morphological investigation by SEM reveals that the mesoporous silicas achieve a good dispersion in the o-CNER matrix due to an effective surface modification. The dielectric constants of all the composites were measured in the frequency range of 50–1,000 kHz. The investigation suggested that the dielectric constant could be reduced from 4.0 of the pure thermosetting o-CNER to 3.71, 3.73, and 3.73 by incorporating 5 wt.% SBA-15, SBA-16, and MSU-X, respectively. The reduction is attributed to incorporation of air voids stored within the mesoporous silicas, the air volume existing in the gaps on interfaces between the mesoporous silica and the matrix, and the free volume created by introducing large-sized domains. The composites present stable dielectric constants across the wide frequency range. An improvement of thermal stability of the o-CNER is achieved by incorporation of the mesoporous silica materials, while the enhanced interfacial interaction between the surface-modified mesoporous silica and the o-CNER matrix has also led to an improvement of toughness.


Dielectric Constant Mesoporous Silica Impact Strength Silica Film Mesoporous Silica Material 



The authors greatly appreciate financial support from the National Natural Science Foundation of China (Grant No.: 50573006).


  1. 1.
    Wong CP, Wong MM (1999) IEEE T Compon Pack T 22:21. doi: CrossRefGoogle Scholar
  2. 2.
    Enlow LR, Swanson DW, Naito CM (1999) Microelectron Reliab 39:515. doi: CrossRefGoogle Scholar
  3. 3.
    Tai HJ, Wang JB, Chen JH et al (2001) J Appl Polym Sci 79:652. doi:<652::AID-APP90>3.0.CO;2-U CrossRefGoogle Scholar
  4. 4.
    Kim WG, Lee JY (2002) Polymer 43:5713. doi: CrossRefGoogle Scholar
  5. 5.
    Imai T, Sawa F, Nakano T et al (2006) IEEE T Dielect El In 13:319. doi: CrossRefGoogle Scholar
  6. 6.
    Flandin L, Vouyovitch L, Beroual A et al (2005) J Phys D Appl Phys 38:144. doi: CrossRefGoogle Scholar
  7. 7.
    Han JT, Cho KW (2005) Macromol Mater Eng 290:1184. doi: CrossRefGoogle Scholar
  8. 8.
    Gao JG, Zhao M, Li G (2006) J Appl Polym Sci 101:3023. doi: CrossRefGoogle Scholar
  9. 9.
    Liu YL, Chen CP, Jeng RJ (2003) J Appl Polym Sci 90:4047. doi: CrossRefGoogle Scholar
  10. 10.
    Yang PD, Zhao DY, Margolese DI et al (1998) Nature 396:152. doi: CrossRefGoogle Scholar
  11. 11.
    Zhao DY, Feng JL, Huo QS et al (1998) Science 279:548. doi: CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Baskaran S, Liu J, Domansky K et al (2000) Adv Mater 12:291. doi:<291::AID-ADMA291>3.0.CO;2-P CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Wang J, Zhang CR, Feng J (2005) Prog Chem 17:1001Google Scholar
  16. 16.
    Chen-Yang YW, Chen CW, Wu YZ et al (2005) Electrochem Solid-State Lett 8:F1. doi: CrossRefGoogle Scholar
  17. 17.
    Lin JJ, Wand XD (2007) Polymer 48:318. doi: CrossRefGoogle Scholar
  18. 18.
    Cheng CF, Cheng HH, Cheng PW et al (2006) Macromolecules 39:7583. doi: CrossRefGoogle Scholar
  19. 19.
    Wang N, Zhang J, Dai CY et al (2006) Eng Plast Appl 34:15Google Scholar
  20. 20.
    Zhao D, Sun J, Li Q et al (2000) Chem Mater 12:275. doi: CrossRefGoogle Scholar
  21. 21.
    Jin ZW, Wang XD, Cui XG (2008) Microporous Mesoporous Mater 108:183CrossRefGoogle Scholar
  22. 22.
    Jin ZW, Wang XD, Cui XG (2008) J Non-Cryst Solids 353:2507. doi: CrossRefGoogle Scholar
  23. 23.
    Zhao DY, Huo QS, Feng JL et al (1998) J Am Chem Soc 120:6024. doi: CrossRefGoogle Scholar
  24. 24.
    Prouzet E, Boissiere C, Patricia JK (2002) J Mater Chem 12:1553. doi: CrossRefGoogle Scholar
  25. 25.
    Morishige K, Tateishi N, Fukuma S (2003) J Phys Chem B 107:5177. doi: CrossRefGoogle Scholar
  26. 26.
    Khodakov AY, Zholobenko VL, Bechara R et al (2005) Microporous Mesoporous Mater 79:29. doi: CrossRefGoogle Scholar
  27. 27.
    Shi YF, Meng Y, Chen DH et al (2006) Adv Funct Mater 16:561. doi: CrossRefGoogle Scholar
  28. 28.
    Yu CZ, Fan J, Tian BZ et al (2004) Chem Mater 16:889. doi: CrossRefGoogle Scholar
  29. 29.
    Mascia L, Prezzi L, Haworth B (2006) J Mater Sci 41:1145. doi: CrossRefGoogle Scholar
  30. 30.
    Zunjarrao SC, Singh RP (2006) Compos Sci Technol 66:2296. doi: CrossRefGoogle Scholar
  31. 31.
    Kutnjak Z, Vodopivec B, Kuscer D (2005) J Non-Cryst Solids 351:1261. doi: CrossRefGoogle Scholar
  32. 32.
    Hernandez-Torres J, Mendoza-Galvan A (2005) J Non-Cryst Solids 351:2029. doi: CrossRefGoogle Scholar
  33. 33.
    Yamada T, Uead T, Kitayama T (1982) J Appl Phys 53:4328. doi: CrossRefGoogle Scholar
  34. 34.
    Zhang YH, Lu SG, Li YQ et al (2005) Adv Mater 17:1056. doi: CrossRefGoogle Scholar
  35. 35.
    Wahab MA, Kim I, Ha CS (2003) Polymer 44:4705. doi: CrossRefGoogle Scholar
  36. 36.
    Deligoz H, Yalcinyuva T, Ozgumus S, Yildirim S (2006) J Appl Polym Sci 100:810. doi: CrossRefGoogle Scholar
  37. 37.
    Choi MH, Chung IJ (2003) J Appl Polym Sci 90:2316. doi: CrossRefGoogle Scholar
  38. 38.
    Dean K, Krstina J, Tian W et al (2007) Macromol Mater Eng 292:415. doi: CrossRefGoogle Scholar
  39. 39.
    Bartczak Z, Argon AS, Cohen RE et al (1999) Polymer 40:2347. doi: CrossRefGoogle Scholar
  40. 40.
    Thio YS, Argon AS, Cohen RE et al (2002) Polymer 43:3661. doi: CrossRefGoogle Scholar
  41. 41.
    Argon AS, Cohen RE (2003) Polymer 44:6013. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, School of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations