Advertisement

Journal of Materials Science

, Volume 43, Issue 13, pp 4466–4474 | Cite as

SiOC ceramic foams synthesized from electron beam irradiated methylsilicone resin

  • R. M. RochaEmail author
  • E. A. B. Moura
  • A. H. A. Bressiani
  • J. C. Bressiani
Article

Abstract

A new method to prepare silicon oxycarbide (SiOC) foams has been developed and it consists of electron beam irradiation of a methylsilicone preceramic polymer followed by pyrolysis in an inert atmosphere. Methylsilicone resin foams were prepared by simultaneous curing and foaming, without the addition of calalysts or blowing agents. The polymer precursor was irradiated with 1.5 MeV EB up to a dose of 7.0 MGy and at a dose rate of 2.8 kG/s, in air. During irradiation the polymer melted, due to rapid increase in temperature, and simultaneously crosslinked by interaction with the ionizing radiation. Crosslinking occurred mainly by poly-condensation reactions and gaseous condensation products were released. The latter acted as an intrinsic foaming agent in the molten polymer. Foams obtained with radiation doses higher than 3.5 MGy showed a high degree of crosslinking with a ceramic yield of over 89% at 1,000 °C. Pyrolysis at 1,200–1,500 °C resulted in SiOC ceramic foams with dense struts and walls, with bulk density around 0.3 g/cm3 and total porosity of 84%. Foams pyrolyzed at 1,200 °C revealed compression strength of 6.8 MPa.

Keywords

Foam PDMS Compression Strength Crosslinking Reaction Methylsilicone 

Notes

Acknowledgment

The authors gratefully acknowledge Carlos Gaia da Silva and Elizabeth S. R. Somessari for performing the EB irradiations.

References

  1. 1.
    Saggio-Woyansky J, Scott CE, Minnear WP (1992) Am Ceram Soc Bull 71:1674Google Scholar
  2. 2.
    Nettleship I (1996) Key Eng Mater 122–124:305CrossRefGoogle Scholar
  3. 3.
    Sheppard LM (1993) Ceram Trans 31:3Google Scholar
  4. 4.
    Scheffler M, Colombo P (2005) Cellular ceramics: structure, manufacturing, properties and applications. Wiley, Weinheim, p 645CrossRefGoogle Scholar
  5. 5.
    Colombo P (2002) Key Eng Mater 206–213:1913Google Scholar
  6. 6.
    Lange FF, Miller KT (1987) Adv Ceram Mat 2:827. doi: https://doi.org/10.1111/j.1151-2916.1987.tb05635.x CrossRefGoogle Scholar
  7. 7.
    Studart AR, Gonzenbach UT, Tervoort E, Gauckler LJ (2006) J Am Ceram Soc 89:1771. doi: https://doi.org/10.1111/j.1551-2916.2006.01044.x CrossRefGoogle Scholar
  8. 8.
    Colombo P, Hellman JR (2002) Mater Res Innovations 6:260. doi: https://doi.org/10.1007/s10019-002-0209-z CrossRefGoogle Scholar
  9. 9.
    Colombo P, Hellmann JR, Shelleman DL (2001) J Am Ceram Soc 84:2245CrossRefGoogle Scholar
  10. 10.
    Colombo P, Hellmann JR, Shelleman DL (2002) J Am Ceram Soc 85:2306. doi: https://doi.org/10.1111/j.1151-2916.2002.tb00452.x CrossRefGoogle Scholar
  11. 11.
    Colombo P, Gambaryan-Roisman T, Scheffler M, Buhler P, Greil P (2001) J Am Ceram Soc 84:2265CrossRefGoogle Scholar
  12. 12.
    Colombo P, Modesti M (1999) J Am Ceram Soc 82:573CrossRefGoogle Scholar
  13. 13.
    Takahashi T, Colombo P (2003) J Porous Mater 10:113. doi: https://doi.org/10.1023/A:1026031729278 CrossRefGoogle Scholar
  14. 14.
    Bao X, Nangrejo MR, Edirisinghe MJ (1999) J Mater Sci 34:2495. doi: https://doi.org/10.1023/A:1004666326039 CrossRefGoogle Scholar
  15. 15.
    Gambaryan-Roisman T, Scheffler M, Buhler P, Greil P (2000) Ceram Trans 108:121Google Scholar
  16. 16.
    Zeschky J, Neunhoeffer FG, Neubauer J, Jason Lo SH, Kummer B, Scheffler M, Greil P (2003) Comp Sci Technol 63:2361. doi: https://doi.org/10.1016/S0266-3538(03)00269-0 CrossRefGoogle Scholar
  17. 17.
    Zeschky J, Höfner T, Arnold C, Weißmann R, Hourlier DB, Scheffler M, Greil P (2005) Acta Mater 53:927. doi: https://doi.org/10.1016/j.actamat.2004.10.039 CrossRefGoogle Scholar
  18. 18.
    Clough R (2001) Nucl Instrum Methods Phys Res B 185:8CrossRefGoogle Scholar
  19. 19.
    Berejka AJ, Eberle C (2002) Radiat Phys Chem 63:551. doi: https://doi.org/10.1016/S0969-806X(01)00553-9 CrossRefGoogle Scholar
  20. 20.
    Okamura K, Seguchi T (1992) J Inorg Organomet Polym 2:171. doi: https://doi.org/10.1007/BF00696544 CrossRefGoogle Scholar
  21. 21.
    Idesaki A, Narisawa M, Okamura K, Sugimoto M, Morita Y, Seguchi T, Itoh M (2001) J Mater Sci 36:357. doi: https://doi.org/10.1023/A:1004864126085 CrossRefGoogle Scholar
  22. 22.
    Idesaki A, Narisawa M, Okamura K, Sugimoto M, Morita Y, Seguchi T, Itoh M (2001) Radiat Phys Chem 60:483. doi: https://doi.org/10.1016/S0969-806X(00)00394-7 CrossRefGoogle Scholar
  23. 23.
    Seguchi T (2000) Radiat Phys Chem 57:367. doi: https://doi.org/10.1016/S0969-806X(99)00406-5 CrossRefGoogle Scholar
  24. 24.
    Kakimura S, Seguchi T, Okamura K (1999) Radiat Phys Chem 54:575. doi: https://doi.org/10.1016/S0969-806X(97)00314-9 CrossRefGoogle Scholar
  25. 25.
    Shimoo T, Tsukada I, Seguchi T, Okamura K (1998) J Am Ceram Soc 81:2109CrossRefGoogle Scholar
  26. 26.
    Takahashi T, Kaschta J, Münstedt H (2001) Rheol Acta 40:490. doi: https://doi.org/10.1007/s003970100173 CrossRefGoogle Scholar
  27. 27.
    Fouassier JP, Rabek JF (1993) Radiation curing in polymer science and technology III. Mechanism of electron beam curing. Elsevier, London, p 301Google Scholar
  28. 28.
    Cleland MR, Farrell JP (1976) Proceedings of the 4th Conference on Application of Small Accelerators. Texas, USAGoogle Scholar
  29. 29.
    Bellany LJ (1975) The infrared spectra of complex molecules. Chapman and Hall, LondonCrossRefGoogle Scholar
  30. 30.
    Miller AA (1960) J Am Chem Soc 82:3519. doi: https://doi.org/10.1021/ja01499a011 CrossRefGoogle Scholar
  31. 31.
    Charlesby A (1991) Irradiation effects on polymer. Elsevier, London, p 39Google Scholar
  32. 32.
    Folland R, Charlesby A (1976) Int J Radiat Phys Chem 8:555. doi: https://doi.org/10.1016/0020-7055(76)90022-X CrossRefGoogle Scholar
  33. 33.
    Charlesby A, Folland R (1983) Radiat Phys Chem 15:392Google Scholar
  34. 34.
    Menhofer H, Zluticky J, Heusinger H (1989) Radiat Phys Chem 33:561Google Scholar
  35. 35.
    Miller AA (1961) J Am Chem Soc 83:31. doi: https://doi.org/10.1021/ja01462a006 CrossRefGoogle Scholar
  36. 36.
    Takahashi T, Münstedt H, Colombo P, Modesti M (2001) J Mater Sci 36:1627. doi: https://doi.org/10.1023/A:1017531415890 CrossRefGoogle Scholar
  37. 37.
    Renlund GM, Prochazka S (1991) J Mater Res 6:2723. doi: https://doi.org/10.1557/JMR.1991.2723 CrossRefGoogle Scholar
  38. 38.
    Pantano CG, Singh AK, Zhang HJ (1999) J Sol–Gel Sci Technol 14:7. doi: https://doi.org/10.1023/A:1008765829012 CrossRefGoogle Scholar
  39. 39.
    Colombo P, Bernardo E (2003) Comp Sci Technol 63:2353. doi: https://doi.org/10.1016/S0266-3538(03)00268-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • R. M. Rocha
    • 1
    Email author
  • E. A. B. Moura
    • 2
  • A. H. A. Bressiani
    • 2
  • J. C. Bressiani
    • 2
  1. 1.Comando-Geral de Tecnologia AeroespacialCTA-IAE-Divisão de Materiais, Pça. Marechal do Ar Eduardo GomesSao Jose dos CamposBrazil
  2. 2.IPEN/CNEN-SPInstituto de Pesquisas Energéticas e NuclearesSao PauloBrazil

Personalised recommendations