Advertisement

Journal of Materials Science

, Volume 43, Issue 13, pp 4475–4482 | Cite as

Retardation of grain growth and cavitation by an electric field during superplastic deformation of ultrafine-grained 3Y-TZP at 1,450–1,600 °C

  • Di Yang
  • Hans ConradEmail author
Article

Abstract

The influence of a continuous dc electric field applied orthogonal to the tensile direction on the flow stress, grain growth, and cavitation during superplastic deformation (SPD) of ultrafine-grained 3Y-TZP at 1,450–1,600 °C was determined. The field gave a significant reduction in the level of the stress-strain curve, and reduced grain growth and cavitation. The decrease in flow stress by the field was attributed mainly to the retardation of grain growth. The decrease in cavitation correlated with the retardation of grain growth and was attributed largely to the reduction in flow stress by the field.

Keywords

Cavitation Flow Stress Superplastic Deformation Sintered Specimen Point Counting Technique 

Notes

Acknowledgements

This research was supported by the US Army Research Laboratory and the US Army Research Office under Grant Nos. DAAH04-94G-0311 and DAA19-02-1-0315 with Drs. W. Simmons and W. Mullins, respectively, as contract monitors. The authors wish to thank Rachel Wolfe for typing the manuscript and Stephen Starnes for preparing the illustrations.

References

  1. 1.
    Nieh T-G, Wadsworth J (1989) J Am Ceram Soc 72:1469. doi: https://doi.org/10.1111/j.1151-2916.1989.tb07678.x CrossRefGoogle Scholar
  2. 2.
    Schissler DJ, Chokshi AH, Nieh T-G, Wadsowrth (1991) J Acta Metall Mater 39:3227. doi: https://doi.org/10.1016/0956-7151(91)90057-8 CrossRefGoogle Scholar
  3. 3.
    Zhou M, Ma Y, Langdon TG (1995) In: Bradt RC et al (eds) Plastic deformation of ceramics. Plenum Press, New York, p 301CrossRefGoogle Scholar
  4. 4.
    Stato T, Nauer M, Carry C (1991) J Am Ceram Soc 74:2615. doi: https://doi.org/10.1111/j.1151-2916.1991.tb06809.x CrossRefGoogle Scholar
  5. 5.
    Nauer N, Carry C (1992) Materials Science Forum, Trans Tech Publications, Switzerland 94–96:871Google Scholar
  6. 6.
    Hwang S-L, Chen I-W (1991) J Am Ceram Soc 73:3268Google Scholar
  7. 7.
    Evans AG, Rice JR, Hirth JP (1980) J Am Ceram Soc 63:368. doi: https://doi.org/10.1111/j.1151-2916.1980.tb10194.x CrossRefGoogle Scholar
  8. 8.
    Yang Di, Conrad H (1997) Scripta Mater 36:1431. doi: https://doi.org/10.1016/S1359-6462(97)00045-6 CrossRefGoogle Scholar
  9. 9.
    Jiménez-Melando M, Dominguez-Rodriguez A, Bravo-Leon A (1998) J Am Ceram Soc 81:2761CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Lücke K, Stüwe HP (1963) In: Himmel Z (ed) Recovery and recrystallization of metals. Gordon and Breach, New York, p 171Google Scholar
  12. 12.
    Yang Di, Conrad H (1998) Scripta Mater 38:1443. doi: https://doi.org/10.1016/S1359-6462(98)00042-6 CrossRefGoogle Scholar
  13. 13.
    Dillon SJ, Harmer MP (2007) Acta Mater 55:5247. doi: https://doi.org/10.1016/j.actamat.2007.04.051 CrossRefGoogle Scholar
  14. 14.
    Tanaka T, Takigawa Y, Higashi K (2008) Scripta Mater 58:643. doi: https://doi.org/10.1016/j.scriptamat.2007.11.028 CrossRefGoogle Scholar
  15. 15.
    Ashby MF, Verrall RA (1973) Acta Metall 21:149. doi: https://doi.org/10.1016/0001-6160(73)90057-6 CrossRefGoogle Scholar
  16. 16.
    Conrad H, Yang Di, Becher P (2008) Mater Sci Eng A 477:358. doi: https://doi.org/10.1016/j.msea.2007.05.057 CrossRefGoogle Scholar
  17. 17.
    Conrad H, Yang Di (2007) Acta Mater 55:6789. doi: https://doi.org/10.1016/j.actamat.2007.08.032 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Materials Science and Engineering DepartmentNorth Carolina State UniversityRaleighUSA

Personalised recommendations