Journal of Materials Science

, Volume 43, Issue 13, pp 4493–4502 | Cite as

Tensile strength improvement of an Mg–12Gd–3Y (wt%) alloy processed by hot extrusion and free forging

  • Li LinEmail author
  • Lijia Chen
  • Zheng Liu


An Mg–12Gd–3Y (wt%) alloy was prepared by conventional casting method using permanent steel mold. Then this alloy was subjected to hot processing, involving hot extrusion and free forging. Tensile strength at room temperature can be improved, with the highest ultimate tensile strength (UTS) value of 390.2 MPa achieved by hot extrusion in comparison to that of as-cast alloy. Temperature dependence of tensile strength is distinguishable for the as-extruded alloy, while the relative stability in UTS values of the alloy after being freely forged should be ascribed to the inter-crossing among deformation bands located at various orientations and the accommodation effect of twining lamellas resulting from forging process on plastic deformation during tensile test at elevated temperatures. Further annealing after hot processing can only have adequate influence on the tensile strength of as-forged alloy. For the alloy freely forged and annealed at 523 K for 4 h, the highest UTS (441.1 MPa) at room temperature is found, which should be mainly related to an evolution from the original as-forged microstructure with subgrains to a more stable combination of large and refined grains through dynamic recrystallization during free forging, and the stress at offset yield YS (384.3 MPa) is also comparable to that relatively high value of 396.9 MPa after solution treatment and isothermal aging of the as-cast alloy.


Magnesium Alloy Ultimate Tensile Strength Basal Slip Grain Boundary Slide Prismatic Plane 



The authors are very grateful to Prof. Zhang Kui of Beijing General Research Institute for Non-Ferrous Metals (GRINM), for his help in preparing parts of the experiment for hot processing. Many thanks go to Dr. Zhao Xin from GRINM. His efforts in giving lots of advice on free forging should also be highly appreciated. This research is supported by a National Supporting Projectfor Science and Technology (2006BAE04B04).


  1. 1.
    Anthony I, Kamado S, Kojima Y (2001) Mater Trans 42:1206CrossRefGoogle Scholar
  2. 2.
    Anthony I, Kamado S, Kojima Y (2001) Mater Trans 42:1212CrossRefGoogle Scholar
  3. 3.
    Smola B, Stulııkovaı I, von Buch F, Mordike BL (2002) Mater Sci Eng A 324:113CrossRefGoogle Scholar
  4. 4.
    Vostryı P, Smola B, Stulııkovaı I, von Buch F, Mordike BL (1999) Phys Stat Sol A175:491CrossRefGoogle Scholar
  5. 5.
    Nie JF, Muddle BC (2000) Acta Mater 48:1691CrossRefGoogle Scholar
  6. 6.
    Apps PJ, Karimzadeh H, King JF, Lorimer GW (2003) Scripta Mater 48:1023CrossRefGoogle Scholar
  7. 7.
    Honma T, Ohkubo T, Hono K, Kamado S (2005) Mater Sci Eng A 395:301CrossRefGoogle Scholar
  8. 8.
    Antion C, Donnadieu P, Perrard F, Deschamps A, Tassin C, Pisch A (2003) Acta Mater 51:5335CrossRefGoogle Scholar
  9. 9.
    Rokhlin LL (2003) Magnesium alloys containing rare earth metals. Taylor and Francis, London, p 1Google Scholar
  10. 10.
    Rokhlin LL, Nikitina NI (1994) Z Metallkd 85:819Google Scholar
  11. 11.
    Akhtar A, Teghtsoonian E (1969) Acta Metall 17:1339CrossRefGoogle Scholar
  12. 12.
    Akhtar A, Teghtsoonian E (1972) Philos Mag 25:897CrossRefGoogle Scholar
  13. 13.
    Sakai T, Jonas JJ (1984) Acta Metall 32:189CrossRefGoogle Scholar
  14. 14.
    Ion SE, Humphreys FJ, White SH (1982) Acta Metall 30:1909CrossRefGoogle Scholar
  15. 15.
    Belyakov A, Gao W, Miura H, Sakai T (1998) Metall Mater Trans 29A:2957CrossRefGoogle Scholar
  16. 16.
    Belyakov A, Sakai T, Miura H (2000) Mater Trans 41:476CrossRefGoogle Scholar
  17. 17.
    Belyakov A, Sakai T, Miura H, Tsuzaki K (2001) Philos Mag 81A:2629CrossRefGoogle Scholar
  18. 18.
    Sitdikov O, Goloborodko A, Sakai T, Miura H, Kaibyshev R (2003) Mater Sci Forum 426–432:381CrossRefGoogle Scholar
  19. 19.
    Sitdikov O, Sakai T, Goloborodko A, Miura H, Kaibyshev R (2004) Mater Trans 45:2232CrossRefGoogle Scholar
  20. 20.
    Sitdikov O, Sakai T, Goloborodko A, Miura H, Kaibyshev R (2004) Mater Sci Forum 467–470:421CrossRefGoogle Scholar
  21. 21.
    Sitdikov O, Sakai T, Goloborodko A, Miura H (2004) Scripta Mater 51:175CrossRefGoogle Scholar
  22. 22.
    Xing J, Yang XY, Miura H, Sakai T (2005) Mater Sci Forum 488–489:597CrossRefGoogle Scholar
  23. 23.
    Sivakesavam O, Rao IS, Prasad YVRK (1993) Mater Sci Technol 9:805Google Scholar
  24. 24.
    Kaibyshev R, Sitdikov O (1992) Phys Met Metall 73:635Google Scholar
  25. 25.
    Kaibyshev R, Sitdikov O (1994) Z Metallkd 85:738Google Scholar
  26. 26.
    Kaibyshev R, Sitdikov O (2000) Phys Met Metall 89:384Google Scholar
  27. 27.
    Nie JF (2003) Scr Mater 48:1009CrossRefGoogle Scholar
  28. 28.
    Wilson DV (1970) J Inst Met 98:133Google Scholar
  29. 29.
    Hilpert M, Styczynski A, Kiese J, Wagner L (1998) Magnesium alloys and their applications. Wiley, Weinheim, Germany, p 319Google Scholar
  30. 30.
    Mukai T, Yamanoi M, Watanabe H, Higashi K (2001) Scripta Mater 45:89CrossRefGoogle Scholar
  31. 31.
    Kaibyshev R, Sitdikov O (1995) Phys Met Metall 80:354Google Scholar
  32. 32.
    Kaibyshev R, Sitdikov O (1995) Phys Met Metall 80:470Google Scholar
  33. 33.
    Kaibyshev O, Valiev K (1987) Grain boundaries and properties of metals. Metallurgy, Moscow, p 214Google Scholar
  34. 34.
    Shtremel MA (1999) Strength of alloys. Lattice defects. MSAI, Moscow, p 547Google Scholar
  35. 35.
    Zaripov N, Vagapov A, Kaibyshev R (1987) Phys Met Metall 63:774Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringShenyang University of TechnologyShenyangPeople’s Republic of China

Personalised recommendations