Journal of Materials Science

, Volume 43, Issue 13, pp 4503–4511 | Cite as

Effect of extrusion ratio on microstructure and mechanical properties of microwave-sintered magnesium and Mg/Y2O3 nanocomposite

  • K. S. Tun
  • M. GuptaEmail author


The present study establishes that extrusion ratio has a critical role in enhancing microstructural and mechanical characteristics of commercially pure magnesium and a magnesium-based nanocomposite. The study reveals that the best microstructural and mechanical characteristics can be achieved in a Mg/Y2O3 nanocomposite provided it is extruded at a ratio higher than a critical extrusion ratio (19:1). An extrusion ratio at 25:1 is found to be the ratio in the present study which leads to significant enhancement in microstructural characteristics (low porosity and good distribution of particulates) and mechanical properties (microhardness, 0.2% YS and UTS) of a Mg/2 wt.%Y2O3 nanocomposite. Results of this study also show very close relationship between microhardness and strengths (0.2% YS and UTS) for both pure magnesium and Mg/Y2O3 composite extruded at different extrusion ratios.


Magnesium Alloy Y2O3 Composite Sample Extrusion Ratio Pure Magnesium 



The authors wish to acknowledge NUS research scholarship for supporting the research effort.


  1. 1.
    Lloyd DJ (1994) Int Mater Rev 39:1CrossRefGoogle Scholar
  2. 2.
    Evans A, Marchi CS, Mortensen A (2003) Metal matrix composites in industry: an introduction and a survey. Kluwer Academic, DordrechtCrossRefGoogle Scholar
  3. 3.
    Goh CS, Wei J, Lee LC, Gupta M (2007) Acta Mater 55:5115. doi: CrossRefGoogle Scholar
  4. 4.
    Hassan SF, Gupta M (2005) Mater Sci Eng A 392:163. doi: CrossRefGoogle Scholar
  5. 5.
    Wong WLE, Gupta M (2007) Compos Sci Technol 67:1541. doi: CrossRefGoogle Scholar
  6. 6.
    Perez P, Garces G, Adeva P (2004) Compos Sci Technol 64:145. doi: CrossRefGoogle Scholar
  7. 7.
    Ferkel H, Mordike BL (2001) Mater Sci Eng A 298:193. doi: CrossRefGoogle Scholar
  8. 8.
    Jiang QC, Wang HY, Ma BX, Wang Y, Zhao F (2005) J Alloys Compd 386:177. doi: CrossRefGoogle Scholar
  9. 9.
    Wang HY, Jiang QC, Wang Y, Ma BX, Zhao F (2004) Mater Lett 58:3509. doi: CrossRefGoogle Scholar
  10. 10.
    Graces G, Rodriguez M, Perez P, Adeva P (2006) Mater Sci Eng A 419:357. doi: CrossRefGoogle Scholar
  11. 11.
    Xiuqing Z, Haowei W, Lihua L, Xinying T, Naiheng M (2005) Mater Lett 59:2105CrossRefGoogle Scholar
  12. 12.
    Hassan SF, Gupta M (2007) J Alloys Compd 429:176. doi: CrossRefGoogle Scholar
  13. 13.
    Chen Y, Wang Q, Peng J, Zhai C, Ding W (2007) J Mater Process Technol 182:281. doi: CrossRefGoogle Scholar
  14. 14.
    Murai T, Matsuoka S, Miyamoto S, Oki Y (2003) J Mater Process Technol 141:207. doi: CrossRefGoogle Scholar
  15. 15.
    Lee DM, Suh BK, Kim BG, Lee JS, Lee CH (1997) Mater Sci Technol 13:590CrossRefGoogle Scholar
  16. 16.
    Gupta M, Wong WLE (2005) Scripta Mater 52:479. doi: CrossRefGoogle Scholar
  17. 17.
    Kawamura Y, Kato H, Inoue A, Masumoto T (1996) Mater Sci Eng A 219:39. doi: CrossRefGoogle Scholar
  18. 18.
    Cocen U, Onel K (2002) Compos Sci Technol 62:275. doi: CrossRefGoogle Scholar
  19. 19.
    Tekmen C, Ozdemir I, Cocen U, Onel K (2003) Mater Sci Eng A 360:365. doi: CrossRefGoogle Scholar
  20. 20.
    Inem B (1995) Mater Sci Eng A 197:91. doi: CrossRefGoogle Scholar
  21. 21.
    Wang XJ, Wu K, Zhang HF, Huang WH, Chang H, Gan WM, Zheng MY, Peng DL (2007) Mater Sci Eng A 465:78. doi: CrossRefGoogle Scholar
  22. 22.
    Doherty RD, Hughes DA, Humphreys FJ, Jonas JJ, Jensen DJ, Kassner ME, King WE, McNelley TR, McQueen HJ, Rollett AD (1997) Mater Sci Eng A 238:219. doi: CrossRefGoogle Scholar
  23. 23.
    Shahani RA, Clyne TW (1991) Mater Sci Eng A 135:281. doi: CrossRefGoogle Scholar
  24. 24.
    Gupta M, Sikand R, Gupta AK (1994) Scripta Metal 30:1343. doi: CrossRefGoogle Scholar
  25. 25.
    Lloyd DJ, Lagace H, McLeod A, Morris PL (1989) Mater Sci Eng A 107:73. doi: CrossRefGoogle Scholar
  26. 26.
    Bocchini GF (1986) Int J Powder Metall 22:185Google Scholar
  27. 27.
    Karabay S, Zeren M, Yilmaz M (2003) J Mater Process Technol 135:101. doi: CrossRefGoogle Scholar
  28. 28.
    Karabay S, Yilmaz M, Zeren M (2005) J Mater Process Technol 160:138. doi: CrossRefGoogle Scholar
  29. 29.
    German RM (1994) Powder metallurgy science, 2nd edn. Metal Powder Industries Federation, PrincetonGoogle Scholar
  30. 30.
    Wang XL, Yu Y, Wang ED (2005) Mater Sci Forum 488–489:535CrossRefGoogle Scholar
  31. 31.
    Robert CS (1960) Magnesium and its alloys. Wiley, New YorkGoogle Scholar
  32. 32.
    Yamashita A, Horita Z, Langdon TG (2001) Mater Sci Eng A 300:142. doi: CrossRefGoogle Scholar
  33. 33.
  34. 34.
    McDanels DL (1985) Metall Trans A 16A:1105. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations