Journal of Materials Science

, Volume 43, Issue 13, pp 4512–4517 | Cite as

Determination of Young’s moduli of 3C (110) single-crystal and (111) polycrystalline silicon carbide from operating frequencies

  • Wenteng ChangEmail author
  • Christian Zorman


This manuscript presents a Young’s moduli analysis by folded-beam and straight-beam MEMS-based 3C silicon carbide (SiC) lateral resonators via finite element modeling. The modeling yields the ranges of the Young’s modulus of (110) single-crystalline and (111) polycrystalline 3C–SiC resonators. This investigation considers the geometric variation of support beams as determined by scanning electron microscope (SEM) micrography. The Young’s moduli of single-crystalline (110) and polycrystalline (111) 3C–SiC folded-beam resonators are estimated to be 337–386 GPa and 353–409 GPa by software modeling. The residual stress was 44 MPa for polycrystalline SiC. These results reveal that crystal orientation may be more important than crystallization in determining the Young’s modulus of 3C–SiC.


Resonant Frequency Beam Width Proof Mass Support Beam Hand Calculation 


  1. 1.
    Nguyen CT-C, Howe RT (1999) IEEE J Solid-State Circuits 34:440CrossRefGoogle Scholar
  2. 2.
    Gong JF, Xiao ZY, Chan PCH (2007) J Micromech Microeng 17:20CrossRefGoogle Scholar
  3. 3.
    Uranga A, Teva J, Verd J, Lo´pez JL, Torres F, Esteve J, Abadal G, Pe´rez-Murano F, Barniol N (2005) Electr Lett 41:1327CrossRefGoogle Scholar
  4. 4.
    Sundararajan S, Bhushan B (1998) Wear 217:251CrossRefGoogle Scholar
  5. 5.
    Serre C, Perez-Rodriguez A, Romano-Rodriguez A, Morante JR, Esteve J (1999) J Micromech Microeng 9:190CrossRefGoogle Scholar
  6. 6.
    Fu X-A, Dunning J, Zorman CA, Mehregany M (2003) In: Proceedings of the 10th international conference on silicon carbide and related materials, ICSCRM 1519Google Scholar
  7. 7.
    Gao D, Wijesundara MBJ, Carraro C, Howe RT, Maboudian R (2003) Digest of technical papers. In: The 12th international conference on solid-state sensors and actuators, vol 2, p 1160Google Scholar
  8. 8.
    Roy S, Zorman CA, Mehregany M, DeAnna R, Deeb C (2006) J Appl Phys 99:44108CrossRefGoogle Scholar
  9. 9.
    Kuo H-I, Zorman CA, Mehregany M (2003) Digest of technical papers. In: The 12th international conference on solid-state sensors and actuators, vol 1, p 742Google Scholar
  10. 10.
    Zorman CA, Rajgopal S, Fu XA, Jezeski R, Melzak J, Mehregany M (2002) Electrochem Solid-State Lett 5:99CrossRefGoogle Scholar
  11. 11.
    Fu X-A, Dunning J, Zorman CA, Mehregany M (2005) Sens Actu A 119:169CrossRefGoogle Scholar
  12. 12.
    Tang WC, Nguyen TCH, Howe RT (1989) Sens Actu A 20:25CrossRefGoogle Scholar
  13. 13.
    Fu X-A, Jezeski R, Zorman CA, Mehregany M (2004) Appl Phys Lett 84:341CrossRefGoogle Scholar
  14. 14.
    Chang W-T, Mehregany M, Zorman C (2007) In: Proceedings of the 2nd IEEE international conference on nano/micro engineered and molecular systems, p 740Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Electrical EngineeringNational University of KaohsiungKaohsiungTaiwan
  2. 2.Department of Electrical Engineering and Computer ScienceCase Western Reserve UniversityClevelandUSA

Personalised recommendations