Advertisement

Journal of Materials Science

, Volume 43, Issue 17, pp 6005–6011 | Cite as

Effect of finishing rolling temperature on fire resistance and dynamic strain aging behavior of a structural steel

  • Welbert Ribeiro Calado
  • Odair José dos Santos
  • Cynthia Serra Batista Castro
  • Ronaldo Neves Barbosa
  • Berenice Mendonça Gonzalez
Article

Abstract

The influence of finishing rolling temperature (FRT) on dynamic strain aging (DSA) behavior and high-temperature resistance of a fire resistant steel microalloyed with Mo and Nb was investigated by means of tensile tests performed at temperatures ranging from 25 to 600 °C and strain rates of 10−4 to 10−1 s−1. In these steels, DSA manifestations are less intense than those observed for carbon steels and they take place at higher temperatures. The precipitation behavior of the steels was also considered. Hardness of samples heat treated at 100–600 °C displayed a maximum at 400 °C. Samples treated at this temperature and tensile tested at 600 °C did not show a higher yield stress than the untreated specimens. Results obtained indicated that DSA in the fire resistant steel might have a contribution for its fire resistance. The empirical activation energies related to the appearance of serrations on the stress–strain curves and to the maxima on the variation of tensile strength with temperature suggested that the high-temperature strengthening associated with DSA in this steel is the dynamic interaction of interstitial-substitutional solute dipoles and dislocations. The steel with lower FRT is more susceptible to DSA because of its higher amount of carbon in solid solution and showed better results in terms of high-temperature resistance.

Keywords

Ferrite Apparent Activation Energy Fire Resistance Dynamic Strain Aging Serrate Flow 

References

  1. 1.
    Kelly FS, Sha W (1999) J Construct Steel Res 50:223. doi: https://doi.org/10.1016/S0143-974X(98)00252-1 CrossRefGoogle Scholar
  2. 2.
    Keira K (1998) Nippon Steel Tech Rep 77:88Google Scholar
  3. 3.
    Chijiiwa R, Yoshida Y, Uemori R, Tamehiro H, Funato K, Horii Y (1993) Nippon Steel Tech Rep 58:47Google Scholar
  4. 4.
    Kamada Y, Fukuda Y, Nakazato T, Hirayama H, Kawano K, Ogata R (1991) Sumitomo Met Tech Rep 47:23Google Scholar
  5. 5.
    Leslie WC (1982) The physical metallurgy of steels. McGraw-Hill Book Company, New YorkGoogle Scholar
  6. 6.
    Baird JD, Jamielson A (1972) JISI 210:841Google Scholar
  7. 7.
    Gunduz S (2002) Ironmak Steelmak 29:341. doi: https://doi.org/10.1179/030192302225004575 CrossRefGoogle Scholar
  8. 8.
    Sha W, Kelly FS, Browne P, Blackmore SPO (2002) J Mater Eng Perform 8:606. doi: https://doi.org/10.1007/s11665-999-0017-3 CrossRefGoogle Scholar
  9. 9.
    Sha W (2004) Mater Sci Technol 20:449. doi: https://doi.org/10.1179/026708304225012305 CrossRefGoogle Scholar
  10. 10.
    Panigrahi BK (2006) Bull Mater Sci 29:59CrossRefGoogle Scholar
  11. 11.
    Karabuk H, Gunduz S (2004) Mater Sci Des 25:521. doi: https://doi.org/10.1016/j.matdes.2004.01.005 Google Scholar
  12. 12.
    Keh AS, Nakada YW, Leslie WC (1968) In: Rosenfield AR, Hahn GT, Bement AL Jr, Jaffee RI (eds) Dislocation dynamics, McGraw Hill, New York, p 81Google Scholar
  13. 13.
    Taheri AK, Maccagno TM, Jonas JJ (1995) ISIJ Inter 35:1532. doi: https://doi.org/10.2355/isijinternational.35.1532 CrossRefGoogle Scholar
  14. 14.
    Espíndola M, Weidig C, Rodrigues PCM, Andrade MS, Gonzalez BM (1995) Wire J Int 28:85Google Scholar
  15. 15.
    Porter DA, Easterling KE (1996) Phase transformation in metals and alloys. Chapman & Hall, LondonGoogle Scholar
  16. 16.
    Petarra DP, Beshers DN (1965) Acta Metall 15:791. doi: https://doi.org/10.1016/0001-6160(67)90360-4 CrossRefGoogle Scholar
  17. 17.
    Cochardt AW, Schoek G, Wiedersich H (1955) Acta Metall 3:533. doi: https://doi.org/10.1016/0001-6160(55)90111-5 CrossRefGoogle Scholar
  18. 18.
    Lenk P, Melser B (1994) Int J Pres Ves Pip 58:361. doi: https://doi.org/10.1016/0308-0161(94)90073-6 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Welbert Ribeiro Calado
    • 1
  • Odair José dos Santos
    • 2
  • Cynthia Serra Batista Castro
    • 3
  • Ronaldo Neves Barbosa
    • 1
  • Berenice Mendonça Gonzalez
    • 1
  1. 1.Department of Metallurgical and Materials EngineeringUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Usiminas, Research and Development CenterIpatingaBrazil
  3. 3.Metallurgical Technology DivisionFundação Centro Tecnológico de Minas GeraisBelo HorizonteBrazil

Personalised recommendations