Journal of Materials Science

, Volume 43, Issue 13, pp 4550–4560 | Cite as

Modification of alumina scale formation on FeCrAlY alloys by minor additions of group IVa elements

  • D. Naumenko
  • V. Kochubey
  • L. Niewolak
  • A. Dymiati
  • J. Mayer
  • L. Singheiser
  • W. J. Quadakkers


The effect of Ti, Zr and Hf minor additions on the alumina scale formation on a high-purity, FeCrAlY model alloy has been studied. Thermogravimetry at 1,200–1,300 °C in Ar–20%O2 and two-stage oxidation using 18O-tracer were combined with characterisation by electron microscopy and sputtered neutral mass spectroscopy. After oxidation, the incorporation of Hf and Zr into the scale was far more substantial than that of Ti. This is explained by the higher thermodynamic stability of the Zr- and Hf-based oxides because the incorporation occurred to a large extent via an internal oxidation process. The scale growth kinetics is accelerated by incorporation of zirconia precipitates that provide short-circuit paths for oxygen diffusion, reduce the scale grain size and cause formation of porosity. In contrast, the incorporation of Hf-containing oxides has no such accelerative effect on the scale growth kinetics.


Oxide Scale Internal Oxidation Alumina Scale Zirconia Particle FeCrAl Alloy 



The authors are grateful to J. Le-Coze from Ecole des Mines de Saint-Etienne for manufacturing of the high-purity model alloys and to E. Wessel from Forschungszentrum Jülich GmbH for the SEM studies. Part of the work was performed in the EU project SMILER (Project No. G5RD-CT-2001-00530). D. Naumenko would like to thank the Deutsch Forschungsgemeinschaft (DFG) for the financial support of his work.


  1. 1.
    Whittle DP, Stringer J (1980) Philos Trans R Soc Lond A 295:309CrossRefGoogle Scholar
  2. 2.
    Quadakkers WJ, Bennett MJ (1994) Mater Sci Technol 10:126CrossRefGoogle Scholar
  3. 3.
    Smeggil JG, Funkenbusch AW, Bornstein NS (1986) Met Trans A 17:923CrossRefGoogle Scholar
  4. 4.
    Hou PY, Stringer J (1992) Oxid Met 38(5/6):323CrossRefGoogle Scholar
  5. 5.
    Quadakkers WJ, Holzbrecher H, Briefs KG et al (1989) Oxid Met 32(1/2):67CrossRefGoogle Scholar
  6. 6.
    Pint BA (1996) Oxid Met 45(1/2):1CrossRefGoogle Scholar
  7. 7.
    Nychka JA, Clarke DR (2005) Oxid Met 63(5/6):325CrossRefGoogle Scholar
  8. 8.
    Pint BA (2003) J Am Ceram Soc 86(4):686CrossRefGoogle Scholar
  9. 9.
    Quadakkers WJ, Naumenko D, Singheiser L et al (2000) Mater Corros 51:350CrossRefGoogle Scholar
  10. 10.
    Klöwer J, Kolb-Telieps A, Brede M (1997) In: Bode H (ed) Proceedings of the international conference on metal supported automotive catalytic converters. Werkstoff-Informationsgesselschaft mbH, Frankfurt, pp 33–46 Google Scholar
  11. 11.
    Ishii K, Kohno M, Ishikawa S, Satoh S (1997) Mater Trans JIM 38(9):787CrossRefGoogle Scholar
  12. 12.
    Gray T H (1997) In: Bode H (ed) Proceedings of the international conference on metal supported automotive catalytic converters. Werkstoff-Informationsgesselschaft mbH, Frankfurt, pp 47–54Google Scholar
  13. 13.
    Kochubey V, Naumenko D, Wessel E et al (2006) Mater Let 60:1654CrossRefGoogle Scholar
  14. 14.
    Reddy KPR, Smialek JL, Cooper AR (1982) Oxid Met 17(5/6):429CrossRefGoogle Scholar
  15. 15.
    Basu SN, Halloran JW (1987) Oxid Met 27(3/4):143CrossRefGoogle Scholar
  16. 16.
    Quadakkers WJ, Naumenko D, Wessel E et al (2004) Oxid Met 61(1/2):17CrossRefGoogle Scholar
  17. 17.
    Quadakkers WJ (1990) Mater Corros 41:659CrossRefGoogle Scholar
  18. 18.
    Liu Z, Gao W, He Y (2000) Oxid Met 53(3/4):341CrossRefGoogle Scholar
  19. 19.
    Naumenko D, Gleeson B, Wessel E et al (2007) Metal Mater Trans 38A:2974CrossRefGoogle Scholar
  20. 20.
    Domagala RF, Rausch JJ, Levinson DW (1961) Trans ASM 53:139Google Scholar
  21. 21.
    Arias D, Abriata JP (1988) Bull Alloy Phase Diag 95:597CrossRefGoogle Scholar
  22. 22.
    Okamoto H (1993) In: Okamoto H (ed) Phase diagrams of binary iron alloys. ASM International, Materials Park, OH, USA, pp 12–28Google Scholar
  23. 23.
    Kofstad P (1988) High temperature corrosion. Elsevier Applied Science Publishers, Barking, UK Google Scholar
  24. 24.
    Pint BA (1997) Oxid Met 48(3/4):303CrossRefGoogle Scholar
  25. 25.
    Mommer N, Lee T, Gardner JA (2000) J Mater Res 15(2):377CrossRefGoogle Scholar
  26. 26.
    Wessel E, Kochubey V, Naumenko D et al (2004) Scr Mater 51(10):987CrossRefGoogle Scholar
  27. 27.
    Megusar J, Meier GH (1976) Metal Trans 7A:1133CrossRefGoogle Scholar
  28. 28.
    Izumi T, Mu N, Zhang L, Gleeson B (2007) Surf Coat Technol 202:628CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • D. Naumenko
    • 1
  • V. Kochubey
    • 1
  • L. Niewolak
    • 1
  • A. Dymiati
    • 2
  • J. Mayer
    • 2
  • L. Singheiser
    • 1
  • W. J. Quadakkers
    • 1
  1. 1.Forschungszentrum Jülich GmbHJülichGermany
  2. 2.Gemeinschaftslabor für ElektronenmikroskopieAachenGermany

Personalised recommendations