Journal of Materials Science

, Volume 43, Issue 13, pp 4561–4566 | Cite as

Texture simulation of aluminum rod during equal channel angular pressing

  • Majid HoseiniEmail author
  • Mahmood Meratian
  • Hualong Li
  • Jerzy A. Szpunar


A general procedure for texture simulation in multi-pass equal channel angular pressing (ECAP) with capability of applying different processing routes is proposed. The program inputs are the initial texture and the loading condition and the output is texture after deformation. Deformation texture in ECAP of aluminum rod was predicted based on simple shear model for deformation and Visco plastic self consistent model for texture simulation. The simulation was done for two consecutive passes of ECAP and the results were compared with experimental texture measurements. The initial texture of the sample before ECAP was found to play a key role in formation of the final texture and a good agreement between the simulated and the experimental texture was obtained.


Pole Figure Simple Shear Equal Channel Angular Pressing Deformation Texture Initial Texture 


  1. 1.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Progr Mater Sci 45:103. doi: CrossRefGoogle Scholar
  2. 2.
    Segal VM, Drobyshevski AE, Kopylov VI (1981) Russ Metal (Eng trans) 1:99Google Scholar
  3. 3.
    Valiev RZ, Langdon TG (2006) Progr Mater Sci 51:881. doi: CrossRefGoogle Scholar
  4. 4.
    Segal VM (1995) Mater Sci Eng A 197:157. doi: CrossRefGoogle Scholar
  5. 5.
    Nakashima K, Horita Z, Nemoto M, Langdon TG (2000) Mater Sci Eng A 281:82. doi: CrossRefGoogle Scholar
  6. 6.
    Suwas S, Toth LS, Fundenberger J-J, Eberhardt A, Skrotzki W (2003) Scr Mater 49:1203. doi: CrossRefGoogle Scholar
  7. 7.
    Suh J-Y, Han J-H, Oh K-H, Lee J-C (2003) Scr Mater 49:185. doi: CrossRefGoogle Scholar
  8. 8.
    Beyerlein IJ, Lebensohn RA, Tome CN (2003) Mater Sci Eng A 345:122. doi: CrossRefGoogle Scholar
  9. 9.
    Gholinia A, Bate P, Prangnell PB (2002) Acta Mater 50:2121. doi: CrossRefGoogle Scholar
  10. 10.
    Huang WH, Chang L, Kao PW, Chang CP (2001) Mater Sci Eng A 307:113. doi: CrossRefGoogle Scholar
  11. 11.
    Kocks UF, Tome CN, Wenk HR (2000) Texture and anisotropy. Cambridge University Press, CambridgeGoogle Scholar
  12. 12.
    Li S, Gazder AA, Beyerlein IJ, Pereloma EV, Davies CHJ (2006) Acta Mater 54:1087. doi: CrossRefGoogle Scholar
  13. 13.
    Li S, Beyerlein IJ, Bourke MAM (2005) Mater Sci Eng A 394:66. doi: CrossRefGoogle Scholar
  14. 14.
    Li S, Beyerlein IJ, Alexander DJ, Vogel SC (2005) Acta Mater 53:2111CrossRefGoogle Scholar
  15. 15.
    Li S, Beyerlein IJ, Alexander DJ, Vogel SC (2005) Scr Mater 52:1099. doi: CrossRefGoogle Scholar
  16. 16.
    Segal VM (2003) Mater Sci Eng A 345:36. doi: CrossRefGoogle Scholar
  17. 17.
    Lebensohn RA, Tome CN (1993) Acta Metall Mater 41:2611. doi: CrossRefGoogle Scholar
  18. 18.
    Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Scr Mater 35:143. doi: CrossRefGoogle Scholar
  19. 19.
    Toth LS, Gilormini P, Jonas JJ (1988) Acta Metall 36:3077. doi: CrossRefGoogle Scholar
  20. 20.
    Montheillet F, Cohen M, Jonas JJ (1984) Acta Metall 32:2077. doi: CrossRefGoogle Scholar
  21. 21.
    Canova GR, Kocks UF, Jonas JJ (1984) Acta Metall 32:211. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Majid Hoseini
    • 1
    • 2
    Email author
  • Mahmood Meratian
    • 2
  • Hualong Li
    • 1
  • Jerzy A. Szpunar
    • 1
  1. 1.Department of Mining, Metals and Materials EngineeringMcGill UniversityMontrealCanada
  2. 2.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations