Journal of Materials Science

, Volume 43, Issue 12, pp 4330–4339 | Cite as

Rolling wear of EPDM and SBR rubbers as a function of carbon black contents: correlation with microhardness

  • D. Xu
  • J. Karger-KocsisEmail author
  • A. K. Schlarb


The rolling friction and wear of ethylene/propylene/diene (EPDM) and styrene/butadiene rubbers (SBR) with different carbon black (CB) contents were studied against steel in orbital rolling ball (steel)-on-plate (rubber) test rig (Orbital-RBOP) and oscillating rolling ball (steel)-on-plate (rubber) set-up (Oscillating-RBOP). The universal hardness (H), coefficient of friction (COF), and specific wear rate (Ws) of EPDM and SBR were determined. Incorporation of CB increases the universal hardness and the COF (the latter marginally) and decreases the specific wear rate for both EPDM and SBR. The wear mechanisms were concluded by inspecting the worn surfaces in scanning electron microscope and discussed as a function of CB modification. An inverse relationship between the specific wear rate and universal hardness was proposed in form of Ws = kHn, where k and n are constants for a given rubber and testing condition.


Carbon Black Wear Surface Wear Mechanism Wear Track EPDM 



D. Xu thanks the DFG (German Science Foundation) for her fellowship (Graduate school GK 814). Part of this work was done in the framework of the EU project “Kristal” (Contract no.: NMP3-CT-2005-515837;


  1. 1.
    Slusarski L, Bielinski DM, Affrossman S, Pethrick RA (1998) Kautschuk, Gummi, Kunststoffe 51:429Google Scholar
  2. 2.
    Wildberger A, Geisler H, Schuster RH (2007) Kautschuk, Gummi, Kunststoffe 60:24Google Scholar
  3. 3.
    Hong CK, Kim H, Ryu C, Nah C, Huh YI, Kaang S (2007) J Mater Sci 42:8391. doi: CrossRefGoogle Scholar
  4. 4.
    Majumder PS, Bhowmick AK (1998) Wear 221:15. doi: CrossRefGoogle Scholar
  5. 5.
    Zhang SW (2004) Tribology of elastomers. Tribology and interface engineering series, No. 47. Elsevier B. V., New YorkGoogle Scholar
  6. 6.
    Friedrich K (1986) Friction and wear of polymer composites, vol 1. Composite materials series. Elsevier science publishers B. V., Amsterdam, The NetherlandsCrossRefGoogle Scholar
  7. 7.
    Bayer RG (2002) Wear analysis for engineers. HNB Publishing, New YorkGoogle Scholar
  8. 8.
    Thavamani P, Khastgir D, Bhowmick AK (1993) J Mater Sci 28:6318. doi: CrossRefGoogle Scholar
  9. 9.
    Thavamani P, Bhowmick AK (1993) J Mater Sci 28:1351. doi: CrossRefGoogle Scholar
  10. 10.
    Iwai T, Hasegawa K, Ueda S, Uchiyama Y (2005) J Jpn Soc Tribol 50:620Google Scholar
  11. 11.
    Universal hardness test. German norm (1997)Google Scholar
  12. 12.
    Felhös D, Karger-Kocsis J, Xu D (2008) J Appl Polym Sci 108:2840. doi: CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Sarkar AD (1980) Friction and wear. Academic Press Inc. Ltd., LondonGoogle Scholar
  15. 15.
    Fukahori Y, Yamazaki H (1994) Wear 171:195. doi: CrossRefGoogle Scholar
  16. 16.
    Fukahori Y, Yamazaki H (1994) Wear 178:109. doi: CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Chen YK, Kukureka SN, Hooke CJ, Rao M (2000) J Mater Sci 35:1275. doi: Google Scholar
  19. 19.
    Karger-Kocsis J, Mousa A, Major Z, Békési N (2008) Wear 264:359. doi: CrossRefGoogle Scholar
  20. 20.
    Archard JF (1953) J Appl Phys 24:985. doi: CrossRefGoogle Scholar
  21. 21.
    Zhu D, Martini A, Wang W, Hu Y, Lisowsky B, Wang QJ (2007) Trans ASME 129:544. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institut für Verbundwerkstoffe GmbH (Institute for Composite Materials)Kaiserslautern University of TechnologyKaiserslauternGermany

Personalised recommendations