Advertisement

Journal of Materials Science

, Volume 43, Issue 23–24, pp 7465–7473 | Cite as

Texture development in two-pass ECAE-processed beryllium

  • I. J. BeyerleinEmail author
  • R. D. Field
  • K. T. Hartwig
  • C. T. Necker
Ultrafine-Grained Materials

Abstract

Texture development and substructure evolution are described for pure beryllium given two-pass equal channel angular extrusion (ECAE) processing following routes A and C. These routes impose different strain paths between the first and second passes—the former cross-shearing and the latter reversal. Polycrystal calculations that are in good agreement with the texture measurements suggest that basal slip and, secondly, prismatic slip are operative in both passes of both routes. Multi scale polycrystal modeling is shown to effectively predict texture evolution to strains of two caused by both ECAE processing routes. Shear-like deformation textures observed in the second pass of route C are explained by differences in deformation characteristics between the first and second passes.

Keywords

Basal Slip Equal Channel Angular Extrusion Slip Mode Shear Texture Plastic Deformation Zone 

Notes

Acknowledgements

The authors would like to thank Pallas Papin for her assistance in preparing and performing preliminary examinations of TEM foils, and Dr. Robert Hanrahan for technical discussions. Technical discussions with Dr. Dan Thoma and Steve Abeln also contributed significantly to this work. Work at LANL was supported by U.S. DOE Contract No. W-7405-ENG-36. IJB would also like to acknowledge support by a Los Alamos Laboratory Directed Research and Development Project (No. 20030216) and the Office of Basic Energy Sciences Project FWP 06SCPE401.

References

  1. 1.
    Segal VM (1974) Sc.D. Thesis, Minsk (in Russian)Google Scholar
  2. 2.
    Segal VM (1995) Mater Sci Eng A197:157. doi: https://doi.org/10.1016/0921-5093(95)09705-8 CrossRefGoogle Scholar
  3. 3.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881. doi: https://doi.org/10.1016/j.pmatsci.2006.02.003 CrossRefGoogle Scholar
  4. 4.
    Beyerlein IJ, Toth LS (2008) In: Zehetbauer M, Zhu YT (eds) Bulk nanostructured materials. Wiley-VCH, Germany (in press)Google Scholar
  5. 5.
    Li S, Beyerlein IJ, Bourke MAM (2004) Mater Sci Eng A394:66CrossRefGoogle Scholar
  6. 6.
    Yapici GG, Beyerlein IJ, Karaman I et al (2007) Acta Mater 55:4603. doi: https://doi.org/10.1016/j.actamat.2007.03.031 CrossRefGoogle Scholar
  7. 7.
    Beyerlein IJ, Alexander DJ, Tomé CN (2007) J Mater Sci 42:1733. doi: https://doi.org/10.1007/s10853-006-0906-x CrossRefGoogle Scholar
  8. 8.
    Sakai G, Horita Z, Langdon TG (2004) Mater Trans 45:3079. doi: https://doi.org/10.2320/matertrans.45.3079 CrossRefGoogle Scholar
  9. 9.
    Agnew SR, Mehrotra P, Lillo TM et al (2005) Mater Sci Eng 408A:72CrossRefGoogle Scholar
  10. 10.
    Choi WS, Ryoo HS, Hwang SK et al (2002) Metall Mater Trans 33A:973CrossRefGoogle Scholar
  11. 11.
    Yoshida Y, Cisar L, Kamado S (2003) Mater Sci Forum 419–422:533CrossRefGoogle Scholar
  12. 12.
    Li S, Alexander DJ, Beyerlein IJ et al (2008) ICOTOM-15 (in press)Google Scholar
  13. 13.
    Kim WJ, Hong SI, Kim YS (2003) Acta Mater 51:3293. doi: https://doi.org/10.1016/S1359-6454(03)00161-7 CrossRefGoogle Scholar
  14. 14.
    Yu SH, Chun YB, Hwang SK (2005) Phil Mag 85:345. doi: https://doi.org/10.1080/14786430412331315752 CrossRefGoogle Scholar
  15. 15.
    Shin DH, Kim I, Kim J et al (2003) Acta Mater 51:983. doi: https://doi.org/10.1016/S1359-6454(02)00501-3 CrossRefGoogle Scholar
  16. 16.
    Yu SH, Shin DH, Hwang SK (2004) In: Zhu YT et al (eds) Ultra fine-grain symposium III. TMS (The Minerals, Metals & Materials Society), Warrendale, PennsylvaniaGoogle Scholar
  17. 17.
    Field RD, Hartwig KT, Necker CT et al (2002) Metall Mater Trans 33A:965CrossRefGoogle Scholar
  18. 18.
    Yapici GG, Beyerlein IJ, Tome CN et al (2008) Acta Mater (in preparation)Google Scholar
  19. 19.
    Vogel SC, Alexander DJ, Beyerlein IJ et al (2003) Mater Sci Forum 426–432:2661CrossRefGoogle Scholar
  20. 20.
    Agnew SR, Mehrotra P, Lillo TM et al (2005) Acta Mater 53:3135. doi: https://doi.org/10.1016/j.actamat.2005.02.019 CrossRefGoogle Scholar
  21. 21.
    Beyerlein IJ, Lebensohn RA, Tomé CN (2003) Mater Sci Eng 345A:122CrossRefGoogle Scholar
  22. 22.
    Aldinger F (1979) In: Webster D, London GJ (eds) Beryllium science and technology. Plenum Press, New YorkGoogle Scholar
  23. 23.
    Price PB (1963) In: Thomas G, Washburn J (eds) Electron microscopy and strength of crystals. Div. of John Wiley and Sons, New YorkGoogle Scholar
  24. 24.
    Yoo MH, Wei CT (1966) Phil Mag 14:573. doi: https://doi.org/10.1080/14786436608211952 CrossRefGoogle Scholar
  25. 25.
    Brown DW, Agnew SR, Abeln SP et al (2005) Mater Sci Forum 495–497:1037CrossRefGoogle Scholar
  26. 26.
    Semiatin SL, Berbon PB, Langdon TG (2001) Scripta Mater 44:135. doi: https://doi.org/10.1016/S1359-6462(00)00565-0 CrossRefGoogle Scholar
  27. 27.
    Yamaguchi D, Horita Z, Nemoto M, Langdon TG (1999) Scripta Mater 41:791. doi: https://doi.org/10.1016/S1359-6462(99)00233-X CrossRefGoogle Scholar
  28. 28.
  29. 29.
    Kocks UF, Canova GR, Tomé CN et al (1988) Computer Code LACC-88-6. Los Alamos National Laboratory, Los AlamosGoogle Scholar
  30. 30.
    Beyerlein IJ, Tomé CN (2004) Mater Sci Eng A380:171. doi: https://doi.org/10.1016/j.msea.2004.03.063 CrossRefGoogle Scholar
  31. 31.
    Segal VM (1999) Mater Sci Eng A271:322CrossRefGoogle Scholar
  32. 32.
    Li S, Beyerlein IJ, Alexander DJ et al (2005) Acta Mater 53:2111CrossRefGoogle Scholar
  33. 33.
    Backofen WA (1950) Trans AIME 188:1454Google Scholar
  34. 34.
    Rollett AD, Lowe TC, Kocks UF et al (1988) In: Proc. ICOTOM-8. Warrendale, PA, 473 ppGoogle Scholar
  35. 35.
    Anand L, Kalidindi SR (1994) Mech Mater 17:223. doi: https://doi.org/10.1016/0167-6636(94)90062-0 CrossRefGoogle Scholar
  36. 36.
    Tidu A, Wagner F, Huang WH et al (2000) J Phys IV France 10:211. doi: https://doi.org/10.1051/jp4:20001023 CrossRefGoogle Scholar
  37. 37.
    Li S, Beyerlein IJ, Necker CT (2006) Acta Mater 54:1397. doi: https://doi.org/10.1016/j.actamat.2005.11.020 CrossRefGoogle Scholar
  38. 38.
    Perlovich Y, Isaenkova M, Fesenko V et al (2006) Mater Sci Forum (NanoSPD3 Japan) 503–504:853CrossRefGoogle Scholar
  39. 39.
    McNelley TR, Swisher DL (2004) In: Zhu YT et al (eds) Ultrafine grained materials III. TMS (The Minerals, Metals & Materials Society), Warrendale, PennsylvaniaGoogle Scholar
  40. 40.
    Ferrasse S, Segal VM, Kalidindi SR et al (2004) Mater Sci Eng 368A:28CrossRefGoogle Scholar
  41. 41.
    Gibbs MA, Hartwig KT, Cornwell LR et al (1998) Scripta Mater 39:1699. doi: https://doi.org/10.1016/S1359-6462(98)00384-4 CrossRefGoogle Scholar
  42. 42.
    Li S, Gazder AA, Beyerlein IJ et al (2006) Acta Mater 54:1087. doi: https://doi.org/10.1016/j.actamat.2005.10.042 CrossRefGoogle Scholar
  43. 43.
    Li S, Gazder AA, Beyerlein IJ et al (2007) Acta Mater 55:1017. doi: https://doi.org/10.1016/j.actamat.2006.09.022 CrossRefGoogle Scholar
  44. 44.
    Messemaeker JD, Verlinden B, Humbeeck JV (2005) Acta Mater 53:4245. doi: https://doi.org/10.1016/j.actamat.2005.05.024 CrossRefGoogle Scholar
  45. 45.
    Isaenkova M, Perlovich Y, Fesenko V et al (2005) Mater Sci Forum 495–497:827CrossRefGoogle Scholar
  46. 46.
    Perlovich Y, Isaenkova M, Fesenko V et al (2006) Mater Sci Forum (NanoSPD3 Japan) 503–504:859CrossRefGoogle Scholar
  47. 47.
    Li S, Bourke MAM, Beyerlein IJ et al (2004) Mater Sci Eng A382:217CrossRefGoogle Scholar
  48. 48.
    Zhernakov VS, Budilov IN, Kusimov ST et al (2007) Int J Mater Res 98:178CrossRefGoogle Scholar
  49. 49.
    Kim HS, Seo MH, Hong SI (2000) Mater Sci Eng A291:86CrossRefGoogle Scholar
  50. 50.
    Kim HS (2002) Mater Sci Eng A328:317CrossRefGoogle Scholar
  51. 51.
    Li S, Beyerlein IJ, Alexander DJ (2005) Scripta Mater 52:1099. doi: https://doi.org/10.1016/j.scriptamat.2005.02.008 CrossRefGoogle Scholar
  52. 52.
    Lebensohn RA, Tomé CN (1993) Acta Metall 41:2611. doi: https://doi.org/10.1016/0956-7151(93)90130-K CrossRefGoogle Scholar
  53. 53.
    Agnew SR, Kocks UF, Hartwig KT et al (1998) In: Proceedings of the 19th Risø International Symposium on Materials Science. Risø National Laboratory, 201 ppGoogle Scholar
  54. 54.
    Tomé CN, Lebensohn RA, Necker CT (2002) Metall Mater Trans 33A:2635CrossRefGoogle Scholar
  55. 55.
    Vogel SC, Beyerlein IJ, Bourke MAM (2002) Mater Sci Forum 408–412:673CrossRefGoogle Scholar
  56. 56.
    Tomé CN, Canova GR, Kocks UF et al (1984) Acta Metall 32:1637. doi: https://doi.org/10.1016/0001-6160(84)90222-0 CrossRefGoogle Scholar
  57. 57.
    Hill R (1966) J Mech Phys Solids 14:95. doi: https://doi.org/10.1016/0022-5096(66)90040-8 CrossRefGoogle Scholar
  58. 58.
    Mahesh S, Beyerlein IJ, Tomé CN (2005) Scripta Mater 53:965. doi: https://doi.org/10.1016/j.scriptamat.2005.06.017 CrossRefGoogle Scholar
  59. 59.
    Enikeev NA, Abdullin MF, Nazarov AA et al (2007) Int J Mater Res 98:167CrossRefGoogle Scholar
  60. 60.
    Sivakumar SM, Ortiz M (2004) Comput Methods App Mech Eng 193:5177. doi: https://doi.org/10.1016/j.cma.2004.01.036 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • I. J. Beyerlein
    • 1
    Email author
  • R. D. Field
    • 2
  • K. T. Hartwig
    • 3
  • C. T. Necker
    • 2
  1. 1.Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Materials Science and Technology DivisionLos Alamos National LaboratoryLos AlamosUSA
  3. 3.Mechanical Engineering DepartmentTexas A&M UniversityCollege StationUSA

Personalised recommendations