Advertisement

Journal of Materials Science

, Volume 43, Issue 12, pp 4309–4315 | Cite as

Toughness and microstructural analysis of superduplex stainless steel joined by plasma arc welding

  • Emel TabanEmail author
Article

Abstract

EN 1.4410 (UNS S32750) superduplex stainless steel (SDSS) with a thickness of 6.5 mm has been welded by plasma arc welding (PAW) process with different heat inputs. To determine the mechanical properties, impact toughness testing at subzero temperatures starting from −20 °C down to −60 °C was carried out while fractographs were examined by scanning electron microscopy (SEM). Microstructural examination included macro- and microphotographs of the cross sections, ferrite content measurements and hardness survey of the weld zones. Interpreting all data obtained, results were compared depending on the heat inputs of the joints while the relation between heat input and properties was explained. Promising low temperature toughness, results were obtained while it was concluded that the variation of the heat input influenced mainly the ferrite content and hardness of the weld zones. Results showed that PAW, which is considered immature process in welding of SDSS, can be employed for 1.4410 superduplex grade with controlled heat input so the properties.

Keywords

Welding Ferrite Weld Metal Heat Input Impact Toughness 

Notes

Acknowledgements

The author would like to thank colleagues at Industeel, Teknokon Inc., Gedik Welding Inc., Esab AB Sweden, Assan Inc., Cimtas Inc. for their technical support. In addition, Dr. L. Karlsson and Dr. P. Toussaint are acknowledged for the valuable suggestions and technical support.

References

  1. 1.
    Lippold JC, Kotecki DJ (2005) Welding metallurgy and weldability of stainless steels. John Wiley & Sons, NJGoogle Scholar
  2. 2.
    Davis JR, Davis & Assoc. (eds) (1994) Stainless steels. American Society for Metals Materials Park, OHGoogle Scholar
  3. 3.
    Van Nassau L, Meelker H, Hilkes J (1993) Weld World 31, 5:322Google Scholar
  4. 4.
    Karlsson L, Rigdal S, Bergquist EL et al (2007) International conference on Duplex 2007, Italy, paper 11Google Scholar
  5. 5.
    Karlsson L (1999) WRC Bull 438:1 (ISSN 0043-2326)Google Scholar
  6. 6.
    Kaluc E, Taban E (2007) Paslanmaz Celikler, Gelistirilen Yeni Turleri ve Kaynak Edilebilirlikleri. MMO 2007/461, ISBN: 978-9944-89-438-8Google Scholar
  7. 7.
    Karlsson L (1991) Proceedings of international conference on stainless steels, Chiba, p 1093Google Scholar
  8. 8.
    Tavares SSM, Pardal JM, Lima LD et al (2007) Mater Charact 58:610. doi: https://doi.org/10.1016/j.matchar.2006.07.006 CrossRefGoogle Scholar
  9. 9.
    Otarola T, Hollner S, Bennefois B et al (2005) Eng Fail Anal 12:930. doi: https://doi.org/10.1016/j.engfailanal.2004.12.022 CrossRefGoogle Scholar
  10. 10.
    Folkhard E (1988) Welding metallurgy of stainless steels. Springer-Verlag, New YorkCrossRefGoogle Scholar
  11. 11.
    Karlsson L, Tolling J (2006) Proceedings of IIW regional congress on welding and related inspection technologies, South AfricaGoogle Scholar
  12. 12.
    Srinivasan PB, Muthupandi V, Dietzel W et al (2006) J Mater Eng Perform 15(6):758CrossRefGoogle Scholar
  13. 13.
    Srinivasan PB, Muthupandi V, Dietzel W et al (2006) Mater Design 27:182. doi: https://doi.org/10.1016/j.matdes.2004.10.019 CrossRefGoogle Scholar
  14. 14.
    McPherson NA, Li Y, Baker TN (2000) Sci Technol Weld Joining 5(4):235CrossRefGoogle Scholar
  15. 15.
    Petronius I, Bamberger M (2001) Sci Technol Weld Joining 6(2):79CrossRefGoogle Scholar
  16. 16.
    Kordatos JD, Fourlaris G, Papadimitrou G (2001) Scripta Mater 44:401. doi: https://doi.org/10.1016/S1359-6462(00)00613-8 CrossRefGoogle Scholar
  17. 17.
    Muthupandi V, Srinivasan PB, Seshadri SK et al (2003) Mater Sci Eng A358:9. doi: https://doi.org/10.1016/S0921-5093(03)00077-7 CrossRefGoogle Scholar
  18. 18.
    Kuroda T, Ikeuchi K, Ikeda H (2006) Vacuum 80:1331. doi: https://doi.org/10.1016/j.vacuum.2006.01.068 CrossRefGoogle Scholar
  19. 19.
    Ku JS, Ho J, Tjong SC (1997) J Mater Process Technol 63:770. doi: https://doi.org/10.1016/S0924-0136(96)02721-5 CrossRefGoogle Scholar
  20. 20.
    Yip WM, Man HC, Ip WH (1999) Sci Technol Weld Joining 4(4):226CrossRefGoogle Scholar
  21. 21.
    Jianxun Z, Qingyan L, Weiwei L et al (2006) Rare Met Mater Eng 35(11):1822Google Scholar
  22. 22.
    Baxter C, Young M (2000) Duplex America conference, stainless steel world. KCI PublishingGoogle Scholar
  23. 23.
    Comer A, Looney L (2006) Theor Appl Fract Mech 45:139. doi: https://doi.org/10.1016/j.tafmec.2006.02.005 CrossRefGoogle Scholar
  24. 24.
    Sato YS, Nelson TW, Sterling CJ et al (2005) Mater Sci Eng A A397:376. doi: https://doi.org/10.1016/j.msea.2005.02.054 CrossRefGoogle Scholar
  25. 25.
    Urena A, Utero E, Utrilla MV (2007) J Mater Process Technol 182:624. doi: https://doi.org/10.1016/j.jmatprotec.2006.08.030 CrossRefGoogle Scholar
  26. 26.
    Sun Z, Kuo M, Annergren I et al (2003) Mater Sci Eng A356:274. doi: https://doi.org/10.1016/S0921-5093(03)00139-4 CrossRefGoogle Scholar
  27. 27.
    UR47N+ (2007) Product catalogue, Industeel, 8 ppGoogle Scholar
  28. 28.
    Gooch TG (2000) Corrosion NACE Expo, USAGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Mechanical Engineering Department, Engineering FacultyKocaeli UniversityKocaeliTurkey

Personalised recommendations