Journal of Materials Science

, Volume 43, Issue 12, pp 4290–4296 | Cite as

Toughening effect of maleic anhydride grafted linear low density polyethylene on linear low density polyethylene

  • Le-Ping Huang
  • Xing-Ping Zhou
  • Wei Cui
  • Xiao-Lin XieEmail author
  • Shen-Yi Tong


The blend of linear low density polyethylene (LLDPE) and maleic-anhydride grafted LLDPE with the grafting degree of 1.3% and the gel content of 27.0% (designated as LLDPE/MA-PE) was melt-compounded. Their thermal, rheological, and mechanical properties were studied. The crystallization temperature and crystallization rate of LLDPE/MA-PE blends increase due to the nucleation of MA-PE, their crystallinity is between those of LLDPE and MA-PE due to the balance between the nucleation of MA-PE and simultaneously produced more defects. The addition of MA-PE increases the apparent viscosity of blend melts, but the shear-sensitivity of blends provides them with melting processing. Interestingly, the lamellar crystallites induced by MA-PE decrease the tensile yielding strength of LLDPE/MA-PE blends. During the impact fracture, the formation of oriented crystalline lamellae parallel to the crack front and perpendicular to the crack flank, leads to the deformation and microstriations in LLDPE/MA-PE blends. Subsequently, toughness of LLDPE/MA-PE blends is improved.


Apparent Viscosity LDPE Maleic Anhydride LLDPE Polarize Optical Microscope 



The authors are grateful for the financial support of National Natural Science Foundation of China (50573026) and Program for New Century Excellent Talents in Universities of China (NCET-05–0640). As visiting professor of the Centre for Advanced Materials Technology (CAMT), the University of Sydney, XLX thanks Prof. Yiu-Wing Mai’s academic guidance and help.


  1. 1.
    Kaminsky W (1992) In: Kricheldorf HR (ed) Handbook of polymer synthesis. Marcel Dekker, New YorkGoogle Scholar
  2. 2.
    Usami T, Gotoh Y, Takayama S (1986) Macromolecules 19:2722. doi: CrossRefGoogle Scholar
  3. 3.
    Freed KF, Dudowicz J, Freed KF, Dudowicz J (1996) Macromolecules 29:625. doi: CrossRefGoogle Scholar
  4. 4.
    Bubeck RA (2002) Mater Sci Eng R 39:1. doi: CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Russell KE (2002) Prog Polym Sci 27:1007. doi: CrossRefGoogle Scholar
  7. 7.
    Porejko S, Gabara W, Blazejew T, Lecka M (1967) J Polym Sci Part A-1 Polym Chem 7:1647CrossRefGoogle Scholar
  8. 8.
    Bray T, Damiris S, Grace A, Moad G, O’Shea M, Rizzardo E, Van Diepen G (1998) Macromol Symp 129:109CrossRefGoogle Scholar
  9. 9.
    Gaylord NG, Mehta R (1988) J Polym Sci Part A Polym Chem 26:1189. doi: CrossRefGoogle Scholar
  10. 10.
    Gaylord NG, Mehta R, Kumar V, Tazi M (1989) J Appl Polym Sci 38:359. doi: CrossRefGoogle Scholar
  11. 11.
    Gaylord NG, Mehta R, Mohan DR, Kumar V (1992) J Appl Polym Sci 44:1941. doi: CrossRefGoogle Scholar
  12. 12.
    Yang J, Yao Z, Shi D, Huang H, Wang Y, Yin J (2001) J Appl Polym Sci 79:535. doi:≤535::AID-APP170≥3.0.CO;2-L CrossRefGoogle Scholar
  13. 13.
    Hegazy ESA, Taher NH, Ebaid AR, Rabie AG, Kamal H (1990) J Appl Polym Sci 39:1029. doi: CrossRefGoogle Scholar
  14. 14.
    Samay G, Nagy T, White JL (1995) J Appl Polym Sci 56:1423. doi: CrossRefGoogle Scholar
  15. 15.
    Cha J, White JL (2002) Intern Polym Process 17:115CrossRefGoogle Scholar
  16. 16.
    Mahmoud GA (2007) J Appl Polym Sci 104:2769. doi: CrossRefGoogle Scholar
  17. 17.
    Machado AV, van Duin M, Covas JA (2000) J Polym Sci Part A Polym Chem 38:3919. doi:≤3919::AID-POLA90≥3.0.CO;2-L CrossRefGoogle Scholar
  18. 18.
    Machado AV, Covas JA, van Duin M (2001) Polymer 42:3649. doi: CrossRefGoogle Scholar
  19. 19.
    Razavi Aghjeh MK, Nazockdast H, Assempour H (2006) J Appl Polym Sci 99:141. doi: CrossRefGoogle Scholar
  20. 20.
    Sheshkali HRZ, Assempour H, Nazockdast H (2007) J Appl Polym Sci 105:1869. doi: CrossRefGoogle Scholar
  21. 21.
    Utracki LA (1998) Commercial polymer blends. Chapman & Hall, LondonCrossRefGoogle Scholar
  22. 22.
    Tang JW, Tong SY (2007) Sci Technol Chem Ind 15(3):5 (in Chinese)Google Scholar
  23. 23.
    Brydson JA (1981) Flow properties of polymer melts, 2nd edn. George Godwin, LondonGoogle Scholar
  24. 24.
    Run MT, Gao JG, Li ZT (2005) Thermochim Acta 429:171. doi: CrossRefGoogle Scholar
  25. 25.
    Olabisi O, Robeson LM, Shaw MT (1979) Polymer–polymer miscibility. Academic Press, New YorkCrossRefGoogle Scholar
  26. 26.
    Alexander LE (1969) X-ray diffraction methods in polymer science. Wiley, New YorkGoogle Scholar
  27. 27.
  28. 28.
    Lin L, Argon AS (1994) J Mater Sci 29:294. doi: CrossRefGoogle Scholar
  29. 29.
    Bartczak Z, Argon AS, Cohen RE, Kowalewski T (1999) Polymer 40:2367. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Le-Ping Huang
    • 1
  • Xing-Ping Zhou
    • 1
  • Wei Cui
    • 1
  • Xiao-Lin Xie
    • 1
    • 2
    Email author
  • Shen-Yi Tong
    • 3
  1. 1.Department of Chemistry and Chemical Engineering, Hubei Key Laboratory of Materials Chemistry and Service FailureHuazhong University of Science and TechnologyWuhanChina
  2. 2.Center for Advanced Materials Technology, School of Aerospace, Mechanical and Mechatronic Engineering, J07University of SydneySydneyAustralia
  3. 3.Hubei Key Laboratory of Novel Reactor and Green Chemical TechnologyWuhan Institute of TechnologyWuhanChina

Personalised recommendations