Advertisement

Journal of Materials Science

, Volume 43, Issue 23–24, pp 7501–7506 | Cite as

Severe plastic deformation of an as-cast hypoeutectic Al–Si alloy

  • S. Swaminathan
  • J. M. García-Infanta
  • T. R. McNelleyEmail author
  • O. A. Ruano
  • F. Carreño
Ultrafine-Grained Materials

Abstract

Different equal channel angular pressing (ECAP) processing routes have been employed to investigate the flow plane microstructures in a hypoeutectic Al–7wt%Si. In the as-cast condition, this alloy exhibits equiaxed primary aluminum dendrite cells embedded in an Al–Si eutectic constituent. The observed microstructures have been compared to the predicted distortion of a volume element expected during idealized ECAP. The effect of different processing routes on the microstructure refinement, degree of homogenization of second phase particles, and associated mechanical properties are discussed.

Keywords

Equal Channel Angular Pressing Strain Path Flow Plane Equal Channel Angular Pressing Pass Equal Channel Angular Pressing Processing 

Notes

Acknowledgements

The authors acknowledge financial support from CICYT under program MAT2003/01172. J. García-Infanta would like to express his thanks to the Spanish Ministry of Education and Science for providing an FPI fellowship number BES-2004-4865, and travel expenses. T. R. McNelley and S. Swaminathan acknowledge partial support for this work by the U.S. Air Force Office of Scientific Research under funding document no. F1ATA06058G001. S. Swaminathan acknowledges a U.S. National Research Council Fellowship.

References

  1. 1.
    Segal VM, Reznikov VI, Drobyshevskiy AE, Kopylov VI (1981) Russ Metall 1:115Google Scholar
  2. 2.
    Segal VM (2003) Mater Sci Eng A 345:36. doi: https://doi.org/10.1016/S0921-5093(02)00258-7 CrossRefGoogle Scholar
  3. 3.
    Segal VM (1995) Mater Sci Eng A 197:157. doi: https://doi.org/10.1016/0921-5093(95)09705-8 CrossRefGoogle Scholar
  4. 4.
    Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Mater Sci Eng A 257:328. doi: https://doi.org/10.1016/S0921-5093(98)00750-3 CrossRefGoogle Scholar
  5. 5.
    Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Acta Mater 46:3317. doi: https://doi.org/10.1016/S1359-6454(97)00494-1 CrossRefGoogle Scholar
  6. 6.
    Gholinia A, Prangnell PB, Markushev MV (2000) Acta Mater 48:1115. doi: https://doi.org/10.1016/S1359-6454(99)00388-2 CrossRefGoogle Scholar
  7. 7.
    García-Infanta JM, Zhilyaev AP, Cepeda-Jiménez CM, Ruano OA, Carreno F (2008) Scr Mater 58:138. doi: https://doi.org/10.1016/j.scriptamat.2007.09.018 CrossRefGoogle Scholar
  8. 8.
    García-Infanta JM, Swaminathan S, Zhilyaev AP, Carreño F, Ruano OA, McNelley TR (2007) Mater Sci Eng A doi: https://doi.org/10.1016/j.msea.2007.07.080 CrossRefGoogle Scholar
  9. 9.
    García-Infanta JM, Swaminathan S, Carreño F, Ruano OA, McNelley TR (2008) Scr Mater 58:17. doi: https://doi.org/10.1016/j.scriptamat.2007.09.007 CrossRefGoogle Scholar
  10. 10.
    Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena. Elsevier, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • S. Swaminathan
    • 1
  • J. M. García-Infanta
    • 2
  • T. R. McNelley
    • 1
    Email author
  • O. A. Ruano
    • 2
  • F. Carreño
    • 2
  1. 1.Department of Mechanical & Astronautical EngineeringNaval Postgraduate SchoolMontereyUSA
  2. 2.Department of Physical MetallurgyCentro Nacional de Investigaciones Metalúrgicas (CENIM)MadridSpain

Personalised recommendations