Journal of Materials Science

, Volume 43, Issue 23–24, pp 7286–7292 | Cite as

Evaluating the influence of pressure and torsional strain on processing by high-pressure torsion

  • Cheng XuEmail author
  • Zenji Horita
  • Terence G. Langdon
Ultrafine-Grained Materials


Tests were conducted on an Al-6061 alloy to evaluate the separate effects of the applied pressure and the torsional straining in processing by high-pressure torsion (HPT). The values of the Vickers microhardness were measured after processing and plotted both linearly across the diameters of the disks and as three-dimensional representations. The measurements show that the applied pressure increases the hardness in the absence of torsional straining. In the presence of a pressure and torsional straining, the hardness values are high at the edges of the disk but lower in the central region. There is a gradual evolution toward a hardness homogeneity with increasing numbers of HPT revolutions. The hardness values at the edges of the disks are reasonably independent of the applied pressure but the extent of this region of high hardness depends upon both the applied pressure and the numbers of turns in the HPT processing.


Applied Pressure Severe Plastic Deformation Vickers Microhardness Hardness Distribution Torsional Strain 



This work was supported in part by the Light Metals Educational Foundation of Japan, in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan, in the Priority Area “Giant Straining Process for Advanced Materials Containing Ultra-High Density Lattice Defects” and in part by the National Science Foundation of the United States under Grant no. DMR-0243331.


  1. 1.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103. doi: CrossRefGoogle Scholar
  2. 2.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881. doi: CrossRefGoogle Scholar
  3. 3.
    Zhilyaev AP, Nurislamova GV, Kim BK, Baró MD, Szpunar JA, Langdon TG (2003) Acta Mater 51:753. doi: CrossRefGoogle Scholar
  4. 4.
    Stolyarov VV, Valiev RZ (2004) In: Zehetbauer MJ, Valiev RZ (eds) Nanomaterials by severe plastic deformation. Willey-VCH, Weinheim, p 125Google Scholar
  5. 5.
    Zhilyaev AP, Kim BK, Nurislamova GV, Baró MD, Szpunar JA, Langdon TG (2002) Scripta Mater 48:575CrossRefGoogle Scholar
  6. 6.
    Zhilyaev AP, Oh-Ishi K, Langdon TG, McNelley TR (2005) Mater Sci Eng A410–A411:277. doi: CrossRefGoogle Scholar
  7. 7.
    Valiev RZ, Ivanisenko YuV, Rauch EF, Baudelet B (1996) Acta Mater 44:4705. doi: CrossRefGoogle Scholar
  8. 8.
    Wetscher F, Vorhauer A, Stock R, Pippan A (2004) Mater Sci Eng A387–A389:809. doi: CrossRefGoogle Scholar
  9. 9.
    Zhilyaev AP, Lee S, Nurislamova GV, Valiev RZ, Langdon TG (2001) Scripta Mater 44:2753. doi: CrossRefGoogle Scholar
  10. 10.
    Sakai G, Horita Z, Langdon TG (2005) Mater Sci Eng A393:344. doi: CrossRefGoogle Scholar
  11. 11.
    Horita Z, Langdon TG (2005) Mater Sci Eng A410–A411:422. doi: CrossRefGoogle Scholar
  12. 12.
    Xu C, Horita Z, Langdon TG (2007) Acta Mater 55:203. doi: CrossRefGoogle Scholar
  13. 13.
    Jiang H, Zhu YT, Butt DP, Alexandrov IV, Lowe TC (2000) Mater Sci Eng A290:128. doi: CrossRefGoogle Scholar
  14. 14.
    Vorhauer A, Pippan R (2004) Scripta Mater 51:921. doi: CrossRefGoogle Scholar
  15. 15.
    Yang Z, Welzel U (2005) Mater Lett 59:3406. doi: CrossRefGoogle Scholar
  16. 16.
    Xu C, Furukawa M, Horita Z, Langdon TG (2005) Mater Sci Eng A398:66. doi: CrossRefGoogle Scholar
  17. 17.
    Xu C, Langdon TG (2007) J Mater Sci 42:1542. doi: CrossRefGoogle Scholar
  18. 18.
    Zhilyaev AP, McNelley TR, Langdon TG (2007) J Mater Sci 42:1517. doi: CrossRefGoogle Scholar
  19. 19.
    Todaka Y, Umemoto M, Yamazaki A, Sasaki J, Tsuchiya K (2008) Mater Trans 49:7. doi: CrossRefGoogle Scholar
  20. 20.
    Čížek J, Procházka I, Brauer G, Anwand W, Kužel R, Cieslar M, Islamgaliev RK (2003) Phys Stat Sol A 195:335. doi: CrossRefGoogle Scholar
  21. 21.
    Degtyarev MV, Chashchukhina TI, Voronova LM, Patselov AM, Pilyugin VP (2007) Acta Mater 55:6039. doi: CrossRefGoogle Scholar
  22. 22.
    Ungár T, Balogh L, Zhu YT, Horita Z, Xu C, Langdon TG (2007) Mater Sci Eng A444:153. doi: CrossRefGoogle Scholar
  23. 23.
    Balogh L, Ungár T, Zhao Y, Zhu YT, Horita Z, Xu C, Langdon TG (2008) Acta Mater 56:809CrossRefGoogle Scholar
  24. 24.
    Todaka Y, Umemoto M, Yamazaki A, Sasaki J, Tsuchiya K (2008) Mater Trans 49:47. doi: CrossRefGoogle Scholar
  25. 25.
    Concustell A, Sort J, Suriñach S, Gebert A, Eckert J, Zhilyaev AP, Baró MD (2007) Intermetallics 15:1038. doi: CrossRefGoogle Scholar
  26. 26.
    Kovács Zs, Hóbor S, Szabó PJ, Lendvai J, Zhilyaev AP, Révész Á (2007) Mater Sci Eng A449–A451:1139. doi: CrossRefGoogle Scholar
  27. 27.
    Valiev RZ, Alexandrov IV, Zhu YT, Lowe TC (2002) J Mater Res 17:5CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Departments of Aerospace and Mechanical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Materials Science and Engineering, Faculty of EngineeringKyushu UniversityFukuokaJapan
  3. 3.Materials Research Group, School of Engineering SciencesUniversity of SouthamptonSouthamptonUK

Personalised recommendations