Journal of Materials Science

, Volume 43, Issue 12, pp 4271–4281 | Cite as

The role of surface morphology on the strength and failure mode of polymer fibre reinforced single lap joints

  • D. TzetzisEmail author


The present study shows the relation between the surface properties of composite materials, treated with common surface preparation methods, and the mechanically measured bond strengths as quoted from lap-shear tests. The surface properties are studied by roughness measurements, surface free energy assessment, X-ray photoelectron spectroscopy and scanning electron microscopy. The procedures followed, reveal the measure of significance of the mechanical interlocking, kinetics of wetting, chemical reactivity and intermolecular adhesion of the interfaces. It is shown that the governing adhesion qualities determine significantly the fragmentation process and the strength of the joints alongside the load transfer mechanism that is analysed by a simple finite element model. Based on the results, an emphasis is given on elucidating the difference between the intrinsic interfacial adhesion strength and the measured bond strength.


Contact Angle Composite Surface Effective Surface Area Failure Strength Dynamic Contact Angle 


  1. 1.
    Armstrong KB, Barrett R (1998) Care and repair of advance composites. Society of Automotive Engineers InternationalGoogle Scholar
  2. 2.
    Tzetzis D, Hogg PJ, Jogia M (2003) J Adhes Sci Technol 17(3):309. doi: CrossRefGoogle Scholar
  3. 3.
    Tzetzis D, Hogg PJ (2006) Compos Part A Appl Sci Manuf 37:1239. doi: CrossRefGoogle Scholar
  4. 4.
    Tzetzis D, Hogg PJ (2008) Mater Desig 29(2):436. doi: CrossRefGoogle Scholar
  5. 5.
    Tsai MY, Morton J (1995) Compos Struct 32:123. doi: CrossRefGoogle Scholar
  6. 6.
    Lang TP, Mallick PK (1998) Int J Adhes Adhes 18:167. doi: CrossRefGoogle Scholar
  7. 7.
    Adams RD, Davies R (1996) J Adhes 59:171. doi: CrossRefGoogle Scholar
  8. 8.
    Matthews FL, Tester TT (1985) Int J Adhes Adhes 5(1):13. doi: CrossRefGoogle Scholar
  9. 9.
    Kim K-S, Yoo J-S, Yi Y-M, Kim C-G (2006) Compos Struct 72:477. doi: CrossRefGoogle Scholar
  10. 10.
    Kairouz KC, Matthews FL (1993) Composites 24(6):475. doi: CrossRefGoogle Scholar
  11. 11.
    Crane LW, Hamermesh CL, Maus L (1976) SAMPE J 12:6Google Scholar
  12. 12.
    Parker BM, Waghorne RM (1982) Composites 13:280CrossRefGoogle Scholar
  13. 13.
    Moyer DJD, Wightman JP (1989) Surf Interface Anal 14:496. doi: CrossRefGoogle Scholar
  14. 14.
    Parker BM, Waghorne RM (1991) Surf Interface Anal 17(7):471. doi: CrossRefGoogle Scholar
  15. 15.
    Wingfield JRJ (1993) Int J Adhes Adhes 13(3):151. doi: CrossRefGoogle Scholar
  16. 16.
    Chin JW, Wightman JP (1996) Compos Part A 27A:419CrossRefGoogle Scholar
  17. 17.
    Wilhelmy J (1863) Ann Physik 119:177CrossRefGoogle Scholar
  18. 18.
    Carre A, Schultz J (1083) J Adhes 15:151CrossRefGoogle Scholar
  19. 19.
    Tsai MY, Morton J, Matthews J (1995) J Compos Mater 29:1154CrossRefGoogle Scholar
  20. 20.
    Owens DK, Wendt RC (1969) J Appl Polym Sci 13:1971. doi: CrossRefGoogle Scholar
  21. 21.
    Kaelble DH (1971) Physical chemistry of adhesion. Wiley Interscience, pp 149–189Google Scholar
  22. 22.
    Pocius AV, Wenz RP (1985) In: Proc 30th National SAMPE Symposium, vol 30, pp 1073–1087Google Scholar
  23. 23.
    Dynes PJ, Kaelble DH (1974) J Adhes 6:195. doi: CrossRefGoogle Scholar
  24. 24.
    Bénard Q, Fois M, Grisel M (2005) Compos Part A 36 1562. doi: CrossRefGoogle Scholar
  25. 25.
    Kim JK, Kim HS, Lee DG (2003) J Adhes Sci Technol 17(3):329. doi: CrossRefGoogle Scholar
  26. 26.

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.School of Engineering and Materials ScienceQueen Mary College, University of LondonLondonUK

Personalised recommendations