Advertisement

Journal of Materials Science

, Volume 43, Issue 12, pp 4264–4270 | Cite as

Synthesis and properties of barium titanate stannate thin films by chemical solution deposition

  • Jon F. Ihlefeld
  • William J. Borland
  • Jon-Paul Maria
Article

Abstract

Barium titanate stannate (BaTi1−xSnxO3, 0 ≤ x ≤ 0.25) thin films were deposited directly on copper foil substrates via a chelate chemical solution process. The films were subsequently crystallized in a reducing atmosphere such that substrate oxidation was avoided and that the 2-valent state of tin could be stabilized. Despite the stabilization of the low-melting temperature SnO oxidation state at high temperatures, the final grain size was smaller with increased tin incorporation similar to other B-site substituted BaTiO3 films. Temperature and field-dependent dielectric measurements revealed a reduction in dielectric constant and dielectric tuning with increasing tin concentration. The reduction in permittivity with reduced grain size is consistent with the well-known trends for ceramic barium titanate and in combination with a defect-dipole model involving Sn acceptors, can be used to explain the experimental trends. Phase transition frequency dependence was studied and for compositions containing up to 25 mole percent tin. No phase transition dispersion was observed and thus no strong evidence of relaxor-like character. The phase transition became increasingly diffuse with deviation from Curie–Weiss behavior, but the observed transition temperatures agreed well with bulk reference data.

Keywords

Phase Transition Temperature Mole Percent Barium Titanate Copper Substrate Barium Strontium Titanate 

Notes

Acknowledgement

The authors wish to acknowledge the financial support of E.I. Du Pont de Nemours and Company.

References

  1. 1.
    Tombak A, Maria JP, Ayguavives F, Jin Z, Stauf GT, Kingon AI, Mortazawi A (2002) IEEE Microw Wirel Co 12:3. doi: https://doi.org/10.1109/7260.975716 CrossRefGoogle Scholar
  2. 2.
    Pervez NK, Hansen PJ, York RA (2004) Appl Phys Lett 85:4451. doi: https://doi.org/10.1063/1.1818724 CrossRefGoogle Scholar
  3. 3.
    Ghosh D, Laughlin B, Nath J, Kingon AI, Steer MB, Maria JP (2006) Thin Solid Films 496:669. doi: https://doi.org/10.1016/j.tsf.2005.09.025 CrossRefGoogle Scholar
  4. 4.
    Kingon AI, Maria JP, Streiffer SK (2000) Nature 406:1032. doi: https://doi.org/10.1038/35023243 CrossRefGoogle Scholar
  5. 5.
    Hofer C, Hoffmann M, Boettger U, Waser R (2002) Ferroelectrics 270:179. doi: https://doi.org/10.1080/00150190211242 CrossRefGoogle Scholar
  6. 6.
    Ihlefeld J, Laughlin B, Hunt-Lowery A, Borland W, Kingon A, Maria J-P (2005) J Electroceram 14:95. doi: https://doi.org/10.1007/s10832-005-0866-6 CrossRefGoogle Scholar
  7. 7.
    Jonker GH (1955) Philips Tech Rev 17:129Google Scholar
  8. 8.
    Novosiltsev NS, Khodakov AL (1956) Sov Phys Tech Phys 1:306Google Scholar
  9. 9.
    Smolenskii GA, Isupov VA (1954) Zh Tekh Fiz 24:1375Google Scholar
  10. 10.
    Mueller V, Beige H, Abicht HP (2004) Appl Phys Lett 84:1341. doi: https://doi.org/10.1063/1.1649820 CrossRefGoogle Scholar
  11. 11.
    Yasuda N, Ohwa H, Asano S (1996) Jpn J Appl Phys, Part 1 35:5099. doi: https://doi.org/10.1143/JJAP.35.5099 CrossRefGoogle Scholar
  12. 12.
    Smolensky GA (1970) J Phys Soc Jpn 28(Suppl):26Google Scholar
  13. 13.
    Mueller V, Beige H, Abicht HP, Eisenschmidt C (2004) J Mater Res 19:2834. doi: https://doi.org/10.1557/JMR.2004.0386 CrossRefGoogle Scholar
  14. 14.
    Kuo YF, Tseng TY (1999) Electrochem Solid-State Lett 2:236. doi: https://doi.org/10.1149/1.1390795 CrossRefGoogle Scholar
  15. 15.
    Yoon KH, Park JH, Jang JH (1999) J Mater Res 14:2933. doi: https://doi.org/10.1557/JMR.1999.0392 CrossRefGoogle Scholar
  16. 16.
    Zhai JW, Shen B, Yao X, Zhang LY (2004) J Am Ceram Soc 87:2223. doi: https://doi.org/10.1111/j.1151-2916.2004.tb07495.x CrossRefGoogle Scholar
  17. 17.
    Zhai J, Shen B, Yao X, Zhang L (2004) Mater Res Bull 39:1599. doi: https://doi.org/10.1016/j.materresbull.2004.05.010 CrossRefGoogle Scholar
  18. 18.
    Halder S, Victor P, Laha A, Bhattacharya S, Krupanidhi SB, Agarwal G, Singh AK (2002) Solid State Commun 121:329. doi: https://doi.org/10.1016/S0038-1098(02)00017-0 CrossRefGoogle Scholar
  19. 19.
    Nakagauchi R, Kozuka H (2007) J Sol-Gel Sci Technol 42:221. doi: https://doi.org/10.1007/s10971-007-0772-2 CrossRefGoogle Scholar
  20. 20.
    Song S, Zhai JW, Yao X (2007) J Sol-Gel Sci Technol 44:75. doi: https://doi.org/10.1007/s10971-007-1604-0 CrossRefGoogle Scholar
  21. 21.
    Ihlefeld JF, Vodnick AM, Baker SP, Borland WJ, Maria J-P (2008) J Appl Phys 103(7):074112CrossRefGoogle Scholar
  22. 22.
    Dawley JT, Clem PG (2002) Appl Phys Lett 81:3028. doi: https://doi.org/10.1063/1.1516630 CrossRefGoogle Scholar
  23. 23.
    Dawley JT, Ong RJ, Clem PG (2002) J Mater Res 17:1678. doi: https://doi.org/10.1557/JMR.2002.0247 CrossRefGoogle Scholar
  24. 24.
    Ihlefeld JF, Borland W, Maria J-P (2005) J Mater Res 20:2838. doi: https://doi.org/10.1557/JMR.2005.0342 CrossRefGoogle Scholar
  25. 25.
    Ihlefeld JF, Borland WJ, Maria J-P (2008) Thin Solid Films 516:3126. doi: https://doi.org/10.1016/j.tsf.2007.08.096 CrossRefGoogle Scholar
  26. 26.
    Ihlefeld JF, Borland WJ, Maria J-P (2008) Scr Mater 58:549. doi: https://doi.org/10.1016/j.scriptamat.2007.11.008 CrossRefGoogle Scholar
  27. 27.
    Ihlefeld JF, Borland WJ, Maria J-P (2007) Adv Funct Mater 17:1199. doi: https://doi.org/10.1002/adfm.200601159 CrossRefGoogle Scholar
  28. 28.
    Hoffmann S, Waser R (1999) J Eur Ceram Soc 19:1339. doi: https://doi.org/10.1016/S0955-2219(98)00430-0 CrossRefGoogle Scholar
  29. 29.
    Schwartz RW, Clem PG, Voigt JA, Byhoff ER, Van Stry M, Headley TJ, Missert NA (1999) J Am Ceram Soc 82:2359CrossRefGoogle Scholar
  30. 30.
    Barin I (1995) In: Thermochemical data of pure substances VCH. Weinheim, New YorkCrossRefGoogle Scholar
  31. 31.
    Yang GY, Dickey EC, Randall CA, Barber DE, Pinceloup P, Henderson MA, Hill RA, Beeson JJ, Skamser DJ (2004) J Appl Phys 96:7492. doi: https://doi.org/10.1063/1.1809267 CrossRefGoogle Scholar
  32. 32.
    Ihlefeld JF, Losego MD, Collazo R, Borland WJ, Maria JP (2008) J Mater Sci 43:38. doi: https://doi.org/10.1007/s10853-007-2135-3 CrossRefGoogle Scholar
  33. 33.
    Nelson JB, Riley DP (1945) Proc Phys Soc Lond 57:160. doi: https://doi.org/10.1088/0959-5309/57/3/302 CrossRefGoogle Scholar
  34. 34.
    ASTM E 112-96 (2003) In: Standard test methods for determining average grain size. ASTM International, West Conshohocken, PAGoogle Scholar
  35. 35.
    Kröger FA, Vink HJ (1956) Solid State Phys 3:307CrossRefGoogle Scholar
  36. 36.
    Jaffe B, Cook WR, Jaffe HLC (1971) In: Piezoelectric ceramics. Academic Press, London, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jon F. Ihlefeld
    • 1
    • 3
  • William J. Borland
    • 2
  • Jon-Paul Maria
    • 1
  1. 1.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA
  2. 2.DuPont Electronic TechnologiesResearch Triangle ParkUSA
  3. 3.The Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations