Journal of Materials Science

, Volume 43, Issue 12, pp 4257–4263 | Cite as

The effect of annealing on the deformation behaviour and microstructure of crystallized Mg–23.5Ni (wt.%) alloy

  • M. EddahbiEmail author
  • P. Pérez


Rapidly solidified amorphous Mg–23.5Ni (wt.%) ribbons were crystallized at 300 and 400 °C for 90 min. After annealing at 300 °C the microstructure was heterogeneous, consisting of rounded eutectic–lamellar domains, which contained magnesium grains smaller than 500 nm. In the case of ribbons annealed at 400 °C the microstructure, however, was homogenous, and composed of well-formed magnesium grains and Mg2Ni particles. At room temperature both crystallized materials were brittle due to the high volume fraction of Mg2Ni particles, but they exhibited some ductility with increasing test temperature. Above 200 °C, the microstructure of the ribbons annealed at 300 °C was characterised by the formation of particle free zones during the tensile test. This structure was not observed in the material annealed at 400 °C. Deformation behaviour and changes in the microstructure during plastic flow of both crystallized materials were explained according to grain boundary sliding mechanisms.


Stress Exponent Grain Boundary Slide Annealed Material Pipe Diffusion True Strain Curve 



M. Eddahbi thanks postdoctoral stage in Departamento de Física—Universidad Carlos III Madrid. The authors are grateful to MEC for financial support for this work under project MAT2003–02845.


  1. 1.
    Ridley N (1995) Superplasticity: 60 years after Pearson. The Institute of Materials, LondonGoogle Scholar
  2. 2.
    Bae DH, Kim SH, Kim DH, Kim WT (2002) Acta Mater 50:2343. doi:–6454(02)00067-8 CrossRefGoogle Scholar
  3. 3.
    Xu DK, Liu L, Xu YB, Han EH (2007) Mater Sci Eng A 443:248. doi: CrossRefGoogle Scholar
  4. 4.
    Mohri T, Mabuchi M, Saito N, Nakamura M (1998) Mater Sci Eng A 257:287. doi: CrossRefGoogle Scholar
  5. 5.
    Hara M, Morozumi S, Watanabe K (2006) J Alloys Compd 414:207. doi: CrossRefGoogle Scholar
  6. 6.
    Spassov T, Rangelova V, Neykov N (2002) J Alloys Compd 334:219. doi: CrossRefGoogle Scholar
  7. 7.
    Sherby OD, Burke PM (1968) Progr Mater Sci 13:1325. doi: CrossRefGoogle Scholar
  8. 8.
    Vagarali SS, Langdon TG (1982) Acta Metall 29:1969. doi: CrossRefGoogle Scholar
  9. 9.
    Vagarali SS, Langdon TG (1982) Acta Metall 30:1157. doi: CrossRefGoogle Scholar
  10. 10.
    Milička K, Čadek J, Ryš P (1970) Acta Metall 18:1071. doi: CrossRefGoogle Scholar
  11. 11.
    Poirier JP (1976) Plasticité à haute température des solides cristallins. Eyrolles, Paris, pp 291–297Google Scholar
  12. 12.
    Shi L, Northwood DO (1994) Acta Metall Mater 42:871. doi: CrossRefGoogle Scholar
  13. 13.
    Chung SW, Watanabe H, Kim W-J, Higashi K (2004) Mater Trans A 45:1266. doi: CrossRefGoogle Scholar
  14. 14.
    Kim W-J, Chung SW, Chung CS, Kum D (2001) Acta Mater 49:3337. doi: CrossRefGoogle Scholar
  15. 15.
    Watanabe H, Mukai T, Mabuchi M, Higashi K (2001) Acta Mater 49:2027. doi: CrossRefGoogle Scholar
  16. 16.
    Inoue A (1998) Progr Mater Sci 43:365. doi: CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Mohamed FA, Li Y (2001) Mater Sci Eng A 298:1. doi: CrossRefGoogle Scholar
  19. 19.
    Islamgaliev RK, Valiev RZ, Mishra RS, Mukherjee AK (2001) Mater Sci Eng A 304–306:206. doi: CrossRefGoogle Scholar
  20. 20.
    Kempen ATW, Nitsche H, Sommer F, Mittemeijer EJ (2002) Metall Trans A 33:1041. doi: CrossRefGoogle Scholar
  21. 21.
    Pérez P, Garcés G, Adeva P (2004) J Alloys Compd 381:114. doi: CrossRefGoogle Scholar
  22. 22.
    Inoue A, Ohtera K, Kita K, Masumoto T (1988) Jpn J Appl Phys 27:L1796. doi: CrossRefGoogle Scholar
  23. 23.
    Chen HS, Krause JT, Coleman E (1975) J Non-Cryst Solids 18:157. doi: CrossRefGoogle Scholar
  24. 24.
    Poirier JP (1976) Plasticité à haute température des solides cristallins. Eyrolles, Paris, pp 55–71Google Scholar
  25. 25.
    Jonas JJ, Sellars CM, McG Tegart WJ (1969) Metall Rev 14:1Google Scholar
  26. 26.
    Frost HJ, Ashby MF (1982) Deformation mechanisms maps “The plasticity and creep of metals and ceramics”. Pergamon Press, Oxford, pp 44–45Google Scholar
  27. 27.
    Pérez P, Eddahbi M, Garcés G, Sommer F, Adeva P (2004) Scripta Mater 50:1039. doi: CrossRefGoogle Scholar
  28. 28.
    Eckelmeyer KH, Hertzberg RW (1972) Metall Trans 3:609. doi: CrossRefGoogle Scholar
  29. 29.
    Kim WJ, Chung SW, Chung CS, Kum D (2001) Acta Mater 49:3337. doi: CrossRefGoogle Scholar
  30. 30.
    Ke M, Hackney SA, Milligan WW, Aifantis E (1995) Nano Mater 5:689. doi: CrossRefGoogle Scholar
  31. 31.
    Hahn H, Padmanabhan KA (1997) Philos Mag 76:559. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidad Carlos IIILeganesSpain
  2. 2.Centro Nacional de Investigaciones Metalúrgicas (CSIC)MadridSpain

Personalised recommendations